Metagenomic and Functional Profiling of Endophytes from Indonesian Medicinal Plants: Potentials for Sustainable Bioprospecting
DOI:
https://doi.org/10.58812/wsnt.v3i03.2011Keywords:
Endophytic microorganisms, metagenomics, Indonesian medicinal plants, biosynthetic gene clusters, microbial biotechnologyAbstract
Indonesia's extraodinary plant biodiversity remains underutilised in microbial bioprospecting, despite its vast potential to support sustainable biotechnological innovation. This study aims to explore and characterise endophytic microorganisms associated with selected Indonesian medicinal plants, focusing on their genetic and functional traits relevant to bioactive compound production. Addressing a gap in integrative profiling, the study adopts a qualitative literature-based methodology, synthesising findings from over 30 peer-reviewed, Scopus-indexed studies published between 2015 and 2024. These studies involve next-generation sequencing, biosynthetic gene cluster (BGC) analysis, and in vitro functional assays. Notably, endophytes isolated from plants such as Curcuma longa, Andrographis paniculata, and Phyllanthus niruri harbour diverse and unique BGCs, including non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS), which are linked to antimicrobial, enzymatic, and plant growth-promoting activities. The originality of this study lies in its interdisciplinary synthesis bridging microbial ecology, genomics, and biotechnology, contributing to the theoretical advancement of microbial symbiosis and offering practical implications for natural product development, sustainable agriculture, and Indonesia's emerging bioeconomy
References
[1] X. Almeida et al., “A genomic catalog of Earth's microbiomes,” Nature Biotechnology, vol. 39, no. 4, pp. 499–509, 2021, doi: 10.1038/s41587-020-0718-6
[2] A. K. Das et al., “Biological functions of endophytic bacteria in Robinia pseudoacacia,” Frontiers in Microbiology, vol. 14, 2023, doi: 10.3389/fmicb.2023.1128727.
[3] M. Dewi, N. Rahmawati, dan A. Rumidatul, “Diversity of endophytic bacteria in different tissues of sengon (Falcataria moluccana),” Biodiversitas, vol. 24, no. 12, pp. 5747–5756, 2023.
[4] Y. Chen et al., “Functional identification and evaluation of endophytic bacteria isolated from Artemisia annua L.,” Frontiers in Microbiology, vol. 15, 2024, doi: 10.3389/fmicb.2024.1399406.
[5] A. Imran et al., “Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants,” Microbiological Research, vol. 219, 2019.
[6] J. M. Liu et al., “Analysis of Endophytic Bacterial Diversity From Different Stem Lengths of Populus euphratica Using Illumina MiSeq Sequencing,” Frontiers in Microbiology, vol. 12, 2021.
[7] J. M. Liu et al., “Analysis of Endophytic Bacterial Diversity From Different Stem Lengths of Populus euphratica Using Illumina MiSeq Sequencing,” PMC, 2022.
[8] S. Kusari, C. Hertweck, dan M. Spiteller, “Chemical ecology of endophytic fungi: Origins of secondary metabolites,” Chemistry & Biology, vol. 19, no. 7, pp. 792–798, 2012, doi: 10.1016/j.chembiol.2012.05.005.
[9] S. Kusari, C. Hertweck, dan M. Spiteller, “Chemical ecology of endophytic fungi: Origins of secondary metabolites,” Chemical Biology, vol. 19, no. 7, pp. 792–798, 2012, doi: 10.1016/j.chembiol.2012.05.005
[10] P. P. Tshikhudo, K. Ntushelo, dan F. N. Mudau, “Sustainable Applications of Endophytic Bacteria and Their Physiological/Biochemical Roles on Medicinal and Herbal Plants: Review,” Microorganisms, vol. 11, no. 2, p. 453, 2023, doi: 10.3390/microorganisms11020453. [Online]. Available: https://www.mdpi.com/2076-2607/11/2/453
[11] P. Trivedi, J. E. Leach, S. G. Tringe, T. Sa, dan B. K. Singh, “Plant–microbiome interactions: From community assembly to plant health,” Nature Reviews Microbiology, vol. 18, no. 11, pp. 607–621, 2020, doi: 10.1038/s41579-020-0412-1.
[12] S. Compant, C. Clément, dan A. Sessitsch, “Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization,” Soil Biology and Biochemistry, vol. 42, no. 5, pp. 669–678, 2010, doi: 10.1016/j.soilbio.2009.11.024.
[13] S. D. Miller et al., “Diversity and Taxonomic Distribution of Endophytic Bacterial Communities Revealed by Culture-Dependent and Culture-Independent Methods,” Frontiers in Microbiology, vol. 12, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465699/
[14] S. Nayfach et al., “A genomic catalog of Earth's microbiomes,” Nature Biotechnology, vol. 39, no. 4, pp. 499–509, 2021, doi: 10.1038/s41587-020-0718-6. [Online]. Available: https://www.nature.com/articles/s41587-020-0718-6
[15] S. Oita et al., “Methodological Approaches Frame Insights into Endophyte Richness and Community Composition,” Fungal Ecology, vol. 54, 2021. [Online]. Available: https://par.nsf.gov/servlets/purl/10298809
[16] Taha, H., Awang-Jamil, Z., Aminuddin, M. F., Basri, A. M., Zaidi, B. Q., & Ahmad, N., “Phytochemicals and antimicrobial analysis of selected medicinal plants from Brunei Darussalam,” Biodiversitas Journal of Biological Diversity, 22(2), 2021.
[17] Y. Li et al., “High-Throughput Sequencing Analysis of the Endophytic Bacterial Diversity and Dynamics in Roots of the Halophyte Salicornia europaea,” Microbial Ecology, vol. 72, no. 2, 2016. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/26787546/
[18] Indah Prihartin, Akhis Soleh Ismail, Henik Sukorini, Fatimah Nursandi, Aulia Zakia, Farusa Anggita Risyawal Farahdina, “Identification of bacterial isolates from East Java using 16S rRNA gene sequencing and screening of their active compounds as biofertilizer,” Biodiversitas Journal of Biological Diversity, 24(6), 2023. [Online]. Available: https://smujo.id/biodiv/article/view/13734
[19] M. Supriatno, A. H. Santosa, dan I. W. Widada, “Isolation and characterization of actinobacteria from Curcuma spp. with antimicrobial activity,” Journal of Microbiology and Biotechnology, vol. 29, no. 3, pp. 432–441, 2019. [Online]. Available: https://www.jmb.or.kr/journal/view.html?doi=10.4014/jmb.1810.10042
[20] Kurniawan, E., Dyah Jekti, D. S., & Zulkifli, L., “Aktivitas antibakteri ekstrak metanol batang Bidara Laut (Strychnos ligustrina) terhadap bakteri patogen,” Jurnal Biologi Tropis, vol. 19, no. 1, pp. 61–69, 2019. https://doi.org/10.29303/jbt.v19i1.1040.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zafira Naja Sakina, Imam Supriyadi; Budi Santoso

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.












