Bibliometric Analysis of Integrated Pest Management in Sustainable Agriculture
DOI:
https://doi.org/10.58812/pkrppp98Keywords:
Integrated Pest Management, Bibliometric Analysis, Sustainable Agriculture, Pest Control, Biological ControlAbstract
Integrated Pest Management (IPM) has emerged as a sustainable alternative to conventional pest control methods, emphasizing the integration of biological, cultural, mechanical, and chemical approaches. This study conducts a bibliometric analysis of IPM research using data exclusively from the Scopus database and analyzed through VOSviewer. The findings reveal a significant increase in IPM-related publications over the past two decades, indicating growing global interest in sustainable pest management. Key research themes identified include pesticide reduction, biological control, policy frameworks, and technological advancements such as artificial intelligence for pest monitoring. The study also highlights the dominance of developed countries, particularly the United States, United Kingdom, and China, in IPM research, while collaboration between developed and developing nations remains limited. Major challenges to IPM adoption include economic constraints, lack of technical knowledge, and regulatory barriers. Future research should focus on enhancing global collaboration, improving accessibility to biopesticides and digital technologies, and strengthening farmer education and policy support. This study provides valuable insights into the evolution of IPM research and its role in promoting sustainable agriculture.
References
[1] M. Sigala, A. Beer, L. Hodgson, and A. O’Connor, Big Data for Measuring the Impact of Tourism Economic Development Programmes: A Process and Quality Criteria Framework for Using Big Data. 2019.
[2] G. Nguyen et al., “Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey,” Artif. Intell. Rev., vol. 52, no. 1, pp. 77–124, 2019, doi: 10.1007/s10462-018-09679-z.
[3] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0197-0.
[4] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman, “Deep Learning Approach for Intelligent Intrusion Detection System,” IEEE Access, vol. 7, pp. 41525–41550, 2019, doi: 10.1109/ACCESS.2019.2895334.
[5] K. Sivaraman, R. M. V. Krishnan, B. Sundarraj, and S. Sri Gowthem, “Network failure detection and diagnosis by analyzing syslog and SNS data: Applying big data analysis to network operations,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 9 Special Issue 3, pp. 883–887, 2019, doi: 10.35940/ijitee.I3187.0789S319.
[6] A. D. Dwivedi, G. Srivastava, S. Dhar, and R. Singh, “A decentralized privacy-preserving healthcare blockchain for IoT,” Sensors (Switzerland), vol. 19, no. 2, pp. 1–17, 2019, doi: 10.3390/s19020326.
[7] F. Al-Turjman, H. Zahmatkesh, and L. Mostarda, “Quantifying uncertainty in internet of medical things and big-data services using intelligence and deep learning,” IEEE Access, vol. 7, pp. 115749–115759, 2019, doi: 10.1109/ACCESS.2019.2931637.
[8] S. Kumar and M. Singh, “Big data analytics for healthcare industry: Impact, applications, and tools,” Big Data Min. Anal., vol. 2, no. 1, pp. 48–57, 2019, doi: 10.26599/BDMA.2018.9020031.
[9] L. M. Ang, K. P. Seng, G. K. Ijemaru, and A. M. Zungeru, “Deployment of IoV for Smart Cities: Applications, Architecture, and Challenges,” IEEE Access, vol. 7, pp. 6473–6492, 2019, doi: 10.1109/ACCESS.2018.2887076.
[10] B. P. L. Lau et al., “A survey of data fusion in smart city applications,” Inf. Fusion, vol. 52, no. January, pp. 357–374, 2019, doi: 10.1016/j.inffus.2019.05.004.
[11] Y. Wu et al., “Large scale incremental learning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 374–382, 2019, doi: 10.1109/CVPR.2019.00046.
[12] A. Mosavi, S. Shamshirband, E. Salwana, K. wing Chau, and J. H. M. Tah, “Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning,” Eng. Appl. Comput. Fluid Mech., vol. 13, no. 1, pp. 482–492, 2019, doi: 10.1080/19942060.2019.1613448.
[13] V. Palanisamy and R. Thirunavukarasu, “Implications of big data analytics in developing healthcare frameworks – A review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 31, no. 4, pp. 415–425, 2019, doi: 10.1016/j.jksuci.2017.12.007.
[14] J. Sadowski, “When data is capital: Datafication, accumulation, and extraction,” Big Data Soc., vol. 6, no. 1, pp. 1–12, 2019, doi: 10.1177/2053951718820549.
[15] J. R. Saura, B. R. Herraez, and A. Reyes-Menendez, “Comparing a traditional approach for financial brand communication analysis with a big data analytics technique,” IEEE Access, vol. 7, pp. 37100–37108, 2019, doi: 10.1109/ACCESS.2019.2905301.
[16] D. Nallaperuma et al., “Online Incremental Machine Learning Platform for Big Data-Driven Smart Traffic Management,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 12, pp. 4679–4690, 2019, doi: 10.1109/TITS.2019.2924883.
[17] S. Schulz, M. Becker, M. R. Groseclose, S. Schadt, and C. Hopf, “Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development,” Curr. Opin. Biotechnol., vol. 55, pp. 51–59, 2019, doi: 10.1016/j.copbio.2018.08.003.
[18] C. Shang and F. You, “Data Analytics and Machine Learning for Smart Process Manufacturing: Recent Advances and Perspectives in the Big Data Era,” Engineering, vol. 5, no. 6, pp. 1010–1016, 2019, doi: 10.1016/j.eng.2019.01.019.
[19] Y. Yu, M. Li, L. Liu, Y. Li, and J. Wang, “Clinical big data and deep learning: Applications, challenges, and future outlooks,” Big Data Min. Anal., vol. 2, no. 4, pp. 288–305, 2019, doi: 10.26599/BDMA.2019.9020007.
[20] M. Huang, W. Liu, T. Wang, H. Song, X. Li, and A. Liu, “A queuing delay utilization scheme for on-path service aggregation in services-oriented computing networks,” IEEE Access, vol. 7, pp. 23816–23833, 2019, doi: 10.1109/ACCESS.2019.2899402.
[21] G. Xu, Y. Shi, X. Sun, and W. Shen, “Internet of things in marine environment monitoring: A review,” Sensors (Switzerland), vol. 19, no. 7, pp. 1–21, 2019, doi: 10.3390/s19071711.
[22] M. Aqib, R. Mehmood, A. Alzahrani, I. Katib, A. Albeshri, and S. M. Altowaijri, Smarter traffic prediction using big data, in-memory computing, deep learning and gpus, vol. 19, no. 9. 2019.
[23] S. Leonelli and N. Tempini, Data Journeys in the Sciences. 2020.
[24] N. Stylos and J. Zwiegelaar, Big Data as a Game Changer: How Does It Shape Business Intelligence Within a Tourism and Hospitality Industry Context? 2019.
[25] Q. Song, H. Ge, J. Caverlee, and X. Hu, “Tensor completion algorithms in big data analytics,” arXiv, vol. 13, no. 1, 2017.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Loso Judijanto, Sutiharni Sutiharni, Rusdi Angrianto , Nandini Ayuningtias, Nurlailah Nurlailah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.












