

Bibliometric Analysis on Sustainable Finance and Technological Innovation for Climate Change Mitigation

Loso Judijanto

IPOSS Jakarta

Article Info

Article history:

Received September, 2025

Revised September, 2025

Accepted September, 2025

Keywords:

Sustainable finance;
Technological innovation;
Climate change mitigation;
Green finance; Bibliometric
Analysis

ABSTRACT

The growing urgency of climate change has intensified scholarly interest in sustainable finance and technological innovation as key mechanisms for climate change mitigation. While research in this area has expanded rapidly across disciplines, the literature remains fragmented, making it difficult to identify dominant themes, influential contributors, and emerging research directions. This study aims to provide a comprehensive bibliometric analysis of global research on sustainable finance and technological innovation for climate change mitigation. Using data retrieved from the Scopus database, this study applies bibliometric techniques to examine publication patterns, citation structures, co-authorship networks, institutional and country collaborations, and keyword co-occurrence relationships. Visualization and mapping analyses were conducted using VOSviewer to reveal the intellectual structure and temporal evolution of the field. The results show that climate change and sustainable development constitute the core research themes, closely linked with green finance, renewable energy, circular economy, and climate policy. Recent trends indicate a growing emphasis on technology-driven approaches, particularly the integration of artificial intelligence and innovation-oriented financial mechanisms. However, research related to developing countries and inclusive climate finance remains relatively underexplored. This study contributes by offering a systematic overview of the knowledge landscape, identifying research gaps, and highlighting future directions for advancing climate change mitigation through sustainable finance and technological innovation.

This is an open access article under the [CC BY-SA](#) license.

Corresponding Author:

Name: Loso Judijanto

Institution: IPOSS Jakarta

Email: losojudijantobumn@gmail.com

1. Introduction

Climate change has emerged as one of the most pressing global challenges of the twenty-first century, posing significant risks to environmental sustainability, economic stability, and social well-being [1], [2]. Rising

global temperatures, increased frequency of extreme weather events, and long-term ecological degradation have underscored the urgent need for effective climate change mitigation strategies [3]. In response, governments, international organizations, and

the private sector have increasingly emphasized the transition toward low-carbon and climate-resilient development pathways. This transition requires not only regulatory and behavioral changes but also substantial financial resources and technological advancements capable of reducing greenhouse gas emissions while sustaining economic growth [4].

Within this context, sustainable finance has gained prominence as a critical mechanism for mobilizing capital toward environmentally responsible investments. Sustainable finance integrates environmental, social, and governance (ESG) considerations into financial decision-making processes, encouraging investments that contribute to climate mitigation and sustainable development goals [5]. Instruments such as green bonds, sustainability-linked loans, climate funds, and impact investing have expanded rapidly, reflecting growing awareness among investors and policymakers of the financial sector's role in addressing climate change [6], [7]. By redirecting capital flows from carbon-intensive activities toward sustainable alternatives, sustainable finance acts as a catalyst for systemic transformation across industries [8].

At the same time, technological innovation plays an indispensable role in climate change mitigation by enabling more efficient energy use, renewable energy generation, carbon capture, sustainable transportation, and smart infrastructure systems [7]. Innovations in clean energy technologies, digitalization, artificial intelligence, and advanced manufacturing have the potential to significantly reduce emissions while enhancing productivity and competitiveness. However, the development, diffusion, and scaling of such technologies are often constrained by high costs, investment risks, and market uncertainties, underscoring the importance of financial support mechanisms that align innovation incentives with climate objectives [9].

The intersection between sustainable finance and technological innovation has

therefore become a focal point of academic, policy, and industry discourse. Sustainable finance not only provides the necessary capital for climate-oriented technologies but also shapes innovation trajectories by influencing research priorities, risk-sharing arrangements, and commercialization pathways [10], [11]. Conversely, technological innovation enhances the effectiveness and credibility of sustainable finance by generating measurable environmental impacts and improving transparency through data-driven monitoring and reporting tools. This взаимосвязь highlights the need to understand how financial systems and technological ecosystems co-evolve to support climate change mitigation [12], [13].

Over the past two decades, scholarly research on sustainable finance and climate-related technological innovation has grown rapidly across multiple disciplines, including economics, finance, environmental studies, and innovation management. This expanding body of literature reflects diverse theoretical perspectives, methodological approaches, and policy implications. However, the increasing volume and fragmentation of studies also make it challenging to identify dominant research themes, influential contributors, collaboration networks, and emerging trends. As climate change mitigation becomes more urgent, a systematic synthesis of existing knowledge is essential to inform future research directions and evidence-based policymaking.

Despite the growing importance of sustainable finance and technological innovation for climate change mitigation, the existing literature remains dispersed and lacks a comprehensive, systematic mapping of its intellectual structure and evolution. Many studies focus on specific financial instruments, technologies, or regional contexts without providing an overarching view of how the field has developed over time, which themes dominate scholarly discourse, and how research communities are interconnected. The absence of a bibliometric analysis limits the

ability of researchers and policymakers to assess research gaps, identify influential works and institutions, and understand emerging trends that could shape future climate mitigation strategies. The objective of this study is to conduct a bibliometric analysis of scholarly literature on sustainable finance and technological innovation for climate change mitigation.

2. Method

This study employed a bibliometric research design to systematically analyze scholarly publications on sustainable finance and technological innovation for climate change mitigation. The Scopus database was selected as the primary data source due to its

comprehensive coverage of high-quality, peer-reviewed literature across multiple disciplines. Relevant documents were retrieved using a structured search strategy based on predefined keywords related to sustainable finance, technological innovation, and climate change mitigation, applied to titles, abstracts, and author keywords. The dataset was then refined through inclusion and exclusion criteria to ensure relevance and consistency. Bibliometric analysis was conducted using VOSviewer software, which enabled the visualization and mapping of bibliographic networks, including co-authorship, and keyword co-occurrence.

3. Result and Discussion

Co-Authorship Analysis

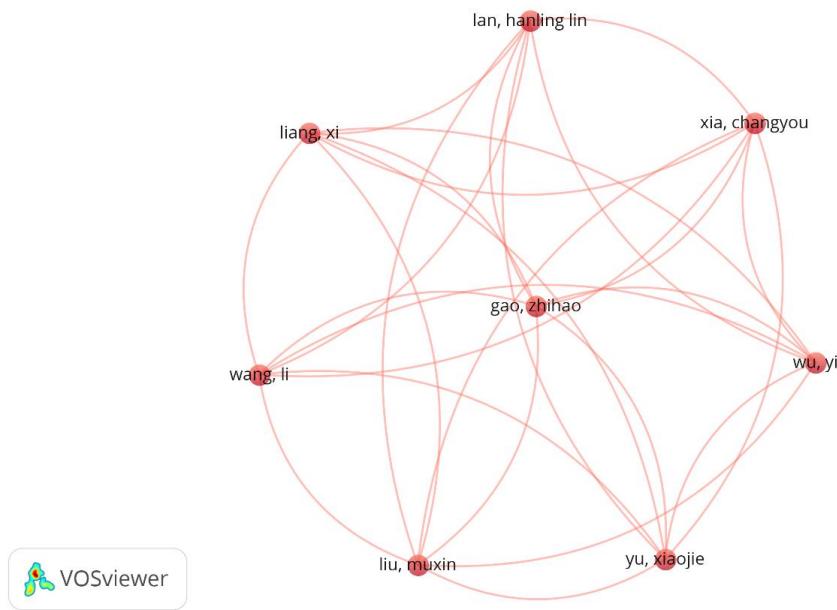


Figure 1. Author Visualization

Source: Data Analysis

Figure 1 illustrates a highly interconnected group of authors working on sustainable finance and technological innovation for climate change mitigation, with Gao, Zhihao positioned as the central and most influential node. This central placement indicates a strong collaborative role, acting as a key connector among multiple researchers such as Liang, Xi; Wu, Yi; Xia, Changyou; Lan,

Hanling; Liu, Muxin; Yu, Xiaojie; and Wang, Ji. The dense web of links suggests frequent co-authorship and a cohesive research community rather than isolated collaborations. The relatively balanced node sizes imply that influence is distributed across several authors, although the centrality of Gao, Zhihao highlights leadership in shaping research directions.

Figure 2. Affiliation Visualization

Source: Data Analysis

Figure 2 highlights a small but strongly interconnected set of leading academic institutions contributing to research on sustainable finance and technological innovation for climate change mitigation. Institutions such as the London School of Economics and Political Science, Università Ca' Foscari Venezia, Department of Economics, Alma Mater Studiorum, ANU College of Business and Economics, and the Euro-Mediterranean Center on Climate Change form

a cohesive collaboration cluster, as indicated by the dense linkage patterns among them. The absence of isolated nodes suggests that research in this domain is driven by cross-institutional and international partnerships, particularly between European and Asia-Pacific institutions. The prominence of economics- and policy-oriented institutions underscores the field's strong grounding in economic analysis, climate policy, and financial systems.

Figure 3. Country Visualization

Source: Data Analysis

Figure 3 reveals a selective but strategically connected pattern of international research cooperation in the field of sustainable finance and technological innovation for climate change mitigation. The United Kingdom occupies a central bridging position, linking major research contributors such as China, Japan, India, and the United States, indicating its role as a key hub for cross-national collaboration. China and Japan show close bilateral connections with the UK, reflecting

strong Asia–Europe research linkages, while India's connection extends toward the United States, suggesting a transcontinental collaboration pathway. The relatively sparse network and limited number of countries imply that, despite the global relevance of climate change mitigation, scholarly collaboration remains concentrated among a few leading economies with advanced research and financial systems.

Citation Analysis

Table 1. Top Cited Literature

Citations	Authors and year	Title
262	[14]	Does green finance counteract the climate change mitigation: Asymmetric effect of renewable energy investment and R&D
145	[15]	Global assessment of technological innovation for climate change adaptation and mitigation in developing world
71	[16]	Green Finance, Innovation and the Energy-Environment-Climate Nexus
56	[17]	Can green finance facilitate Industry 5.0 transition to achieve sustainability? A systematic review with future research directions
44	[18]	Nexus among green finance, technological innovation, green fiscal policy and CO2 emissions: A conditional process analysis
24	[19]	Blind spots in climate finance for innovation
22	[20]	Driving toward sustainable cities: The interplay between Chinese emerging corporate ESG performance and climate finance in achieving low-carbon development
12	[21]	Integrating Microfinance, Climate Finance and Climate Change Adaptation: A Sub-Saharan Africa Perspective
7	[22]	Clean innovation, heterogeneous financing costs, and the optimal climate policy mix
5	[23]	Saving farm subsidies with smart climate interventions: the case of transition to a millet-based agriculture

Source: Scopus Database

Keyword Co-Occurrence Network Analysis

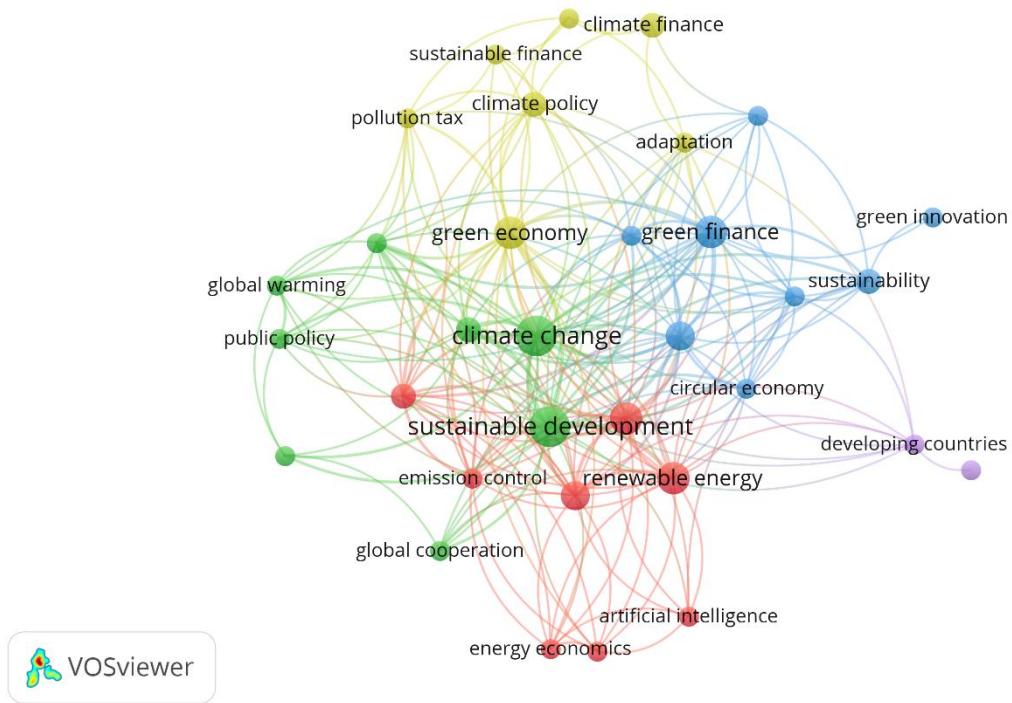


Figure 4. Network Visualization

Source: Data Analysis

Figure 4 reveals a highly integrated and multidisciplinary knowledge structure in the field of sustainable finance and technological innovation for climate change mitigation. At the core of the network, "climate change" and "sustainable development" emerge as the most central and frequently co-occurring keywords, indicating that the literature is fundamentally anchored in global sustainability challenges. Their strong connections with multiple thematic clusters suggest that climate change mitigation is approached not only as an environmental issue but also as an economic, technological, and policy-driven concern. A prominent cluster centers on green finance, sustainability, and circular economy, highlighting the financial mechanisms that support environmentally responsible economic transitions. Keywords such as "green finance," "green innovation," "sustainability," and "circular economy" are tightly connected, reflecting the growing emphasis on financial instruments and business models that enable low-carbon innovation and resource efficiency.

This cluster illustrates how sustainable finance serves as a catalyst for technological innovation aimed at reducing emissions and improving environmental performance.

Another major cluster focuses on policy-oriented and macroeconomic dimensions, including climate policy, sustainable finance, climate finance, pollution tax, and adaptation. The dense interconnections within this cluster indicate that regulatory frameworks and policy interventions play a crucial role in shaping financial flows toward climate mitigation efforts. The presence of keywords such as "adaptation" suggests an expansion of research beyond mitigation alone, incorporating resilience and risk management strategies within sustainable finance discourse. The network also highlights a technology- and energy-driven cluster, dominated by renewable energy, energy economics, artificial intelligence, and emission control. This cluster reflects the integration of advanced technologies and data-driven solutions into climate mitigation strategies. The linkage between artificial

intelligence and renewable energy suggests emerging research interests in smart energy systems, predictive modeling, and optimization techniques that enhance the effectiveness of sustainable finance investments. The appearance of keywords such as global cooperation, public policy, global warming, and

developing countries indicates a growing recognition of the global and inclusive nature of climate change mitigation. These terms emphasize the importance of international collaboration and equitable financial mechanisms to support developing economies in adopting green technologies.

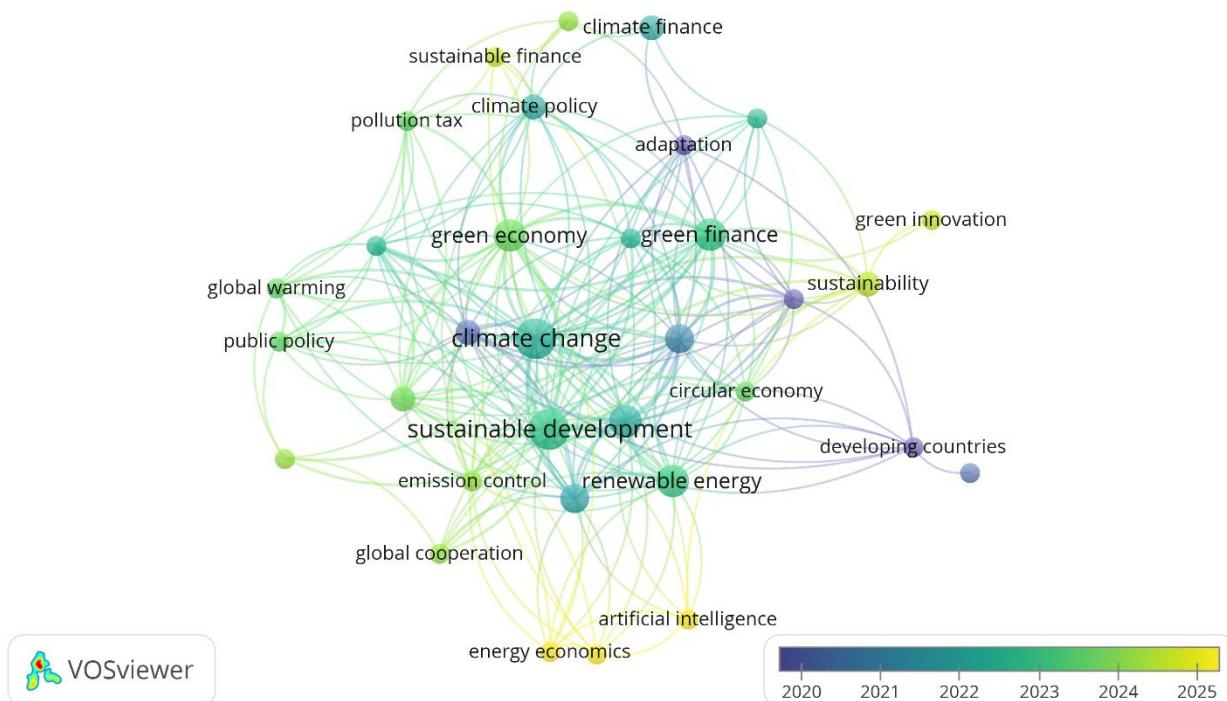


Figure 5. Overlay Visualization

Source: Data Analysis

Figure 5 illustrates the temporal evolution of research themes in sustainable finance and technological innovation for climate change mitigation between 2020 and 2025. Core concepts such as "climate change," "sustainable development," "green economy," and "green finance" appear in earlier color tones, indicating their foundational role in shaping the field. These keywords form the structural backbone of the literature, consistently linking environmental objectives with economic and financial mechanisms over time. More recent research trends are reflected by keywords shown in lighter and yellowish tones, including "artificial intelligence," "energy economics," "green innovation," and "sustainability." The emergence of these terms

suggests a shift toward technologically driven and data-intensive approaches to climate change mitigation. In particular, the growing prominence of artificial intelligence signals increasing scholarly attention to smart financial systems, predictive analytics, and digital tools that enhance the efficiency and impact of green finance and renewable energy investments. Additionally, the visualization highlights an expanding focus on policy adaptation and global inclusivity, as seen in keywords such as "adaptation," "climate finance," and "developing countries." These themes indicate a broadening research agenda that goes beyond mitigation to include resilience, equitable financing, and differentiated policy responses across regions.



Figure 6. Density Visualization

Source: Data Analysis

Figure 6 highlights the most intensively researched and conceptually concentrated themes in the literature on sustainable finance and technological innovation for climate change mitigation. The brightest and most concentrated areas are centered around “climate change,” “sustainable development,” and “renewable energy,” indicating that these topics dominate scholarly attention and form the core of the research field. Their strong density suggests that studies frequently intersect environmental objectives with development goals and energy transition strategies, positioning sustainable finance as a key enabler of low-carbon transformation. Surrounding these core themes are moderately dense clusters related to green finance, green economy, climate finance, climate policy, adaptation, and sustainability, reflecting their growing importance as supporting pillars of the literature. Emerging yet less dense areas such as artificial intelligence, energy economics, green innovation, and developing countries indicate

newer and more specialized research directions that are gaining traction but remain underexplored.

Discussion

Practical Implication

The findings of this bibliometric analysis provide several important practical implications for policymakers, financial institutions, and technology developers involved in climate change mitigation. The strong concentration of research around climate change, sustainable development, renewable energy, and green finance indicates that effective mitigation strategies increasingly rely on the alignment of financial mechanisms with low-carbon technologies. Policymakers can leverage these insights to design integrated regulatory frameworks that incentivize green investment, such as climate finance instruments, pollution taxes, and sustainable finance taxonomies that encourage capital flows toward renewable energy and circular economy initiatives. The growing prominence of artificial

intelligence and green innovation further suggests that digital technologies can enhance decision-making, risk assessment, and monitoring of climate-related financial investments, enabling more efficient and transparent allocation of sustainable finance resources.

For practitioners in the financial and energy sectors, the results highlight the importance of adopting technology-enabled sustainable finance solutions. Financial institutions can integrate AI-driven analytics to evaluate climate risks, optimize green portfolios, and improve ESG performance measurement. Meanwhile, energy and technology firms can use insights from this research to align innovation strategies with emerging sustainability and policy trends, particularly in developing scalable renewable energy solutions. The identification of developing countries and global cooperation as relevant but less densely explored themes also suggests opportunities for international organizations and development banks to strengthen cross-border collaboration and inclusive financing mechanisms that support climate mitigation efforts in emerging economies.

Theoretical Contribution

From a theoretical perspective, this study contributes to the literature by offering a systematic mapping of the intellectual structure and thematic evolution of research on sustainable finance and technological innovation for climate change mitigation. By integrating bibliometric techniques with network, overlay, and density visualizations, the study reveals how financial, technological, and policy-oriented concepts converge within a unified sustainability framework. The central positioning of climate change and sustainable development confirms their role as foundational constructs, while the emergence of green finance, circular economy, and artificial intelligence extends existing sustainability and finance theories by incorporating innovation-

driven and digital dimensions. Furthermore, this study advances theoretical understanding by demonstrating the dynamic evolution of research themes over time, highlighting a shift from policy- and finance-centric discussions toward technology-enabled and data-driven approaches to climate mitigation. This evolution supports the development of interdisciplinary theories that bridge sustainable finance, innovation economics, and environmental governance. By identifying underexplored thematic areas, such as the application of advanced digital technologies in climate finance and the role of sustainable finance in developing countries, the study opens new avenues for theory building and empirical research in sustainable development and financial innovation.

Limitations of the Study

Despite its contributions, this study has several limitations that should be acknowledged. First, the analysis relies solely on data extracted from the Scopus database, which, although comprehensive, may exclude relevant publications indexed in other databases such as Web of Science or regional repositories. As a result, some scholarly contributions, particularly those from emerging economies or non-English publications, may not be fully captured. Second, the bibliometric approach emphasizes publication and citation patterns rather than the substantive quality or empirical robustness of individual studies, which limits the ability to draw causal or evaluative conclusions about research findings. Additionally, the use of **author keywords and co-occurrence analysis** may be subject to inconsistencies in keyword selection and terminology across studies, potentially affecting the interpretation of thematic structures. Finally, this study focuses on a macro-level overview of the research landscape and does not examine specific policy instruments, financial models, or technological applications in depth. Future research could address these limitations by combining bibliometric analysis

with systematic literature reviews or meta-analytical approaches, as well as expanding data sources to provide a more comprehensive and nuanced understanding of sustainable finance and technological innovation for climate change mitigation.

4. Conclusion

This bibliometric study provides a comprehensive overview of the global research landscape on sustainable finance and technological innovation for climate change mitigation, revealing a dynamic and increasingly interconnected body of knowledge. The findings demonstrate that climate change and sustainable development serve as the conceptual core of the literature,

supported by growing research attention to green finance, renewable energy, circular economy, and climate policy instruments. The temporal and density analyses indicate a clear shift toward innovation-driven and technology-enabled approaches, particularly through the integration of artificial intelligence and digital solutions in sustainable finance practices. At the same time, the relatively limited focus on developing countries and inclusive financing highlights important gaps for future research. This study contributes by mapping key themes, collaborations, and emerging trends, offering valuable insights for researchers, policymakers, and practitioners seeking to advance effective and equitable climate change mitigation strategies through sustainable finance and technological innovation.

References

- [1] O. Weber and S. Remer, *Social banks and the future of sustainable finance*. Routledge, 2011.
- [2] A. M. Fatemi and I. J. Fooladi, "Sustainable finance: A new paradigm," *Glob. Financ. J.*, vol. 24, no. 2, pp. 101–113, 2013.
- [3] M. Migliorelli, "What do we mean by sustainable finance? Assessing existing frameworks and policy risks," *Sustainability*, vol. 13, no. 2, p. 975, 2021.
- [4] S. Kumar, D. Sharma, S. Rao, W. M. Lim, and S. K. Mangla, "Past, present, and future of sustainable finance: insights from big data analytics through machine learning of scholarly research," *Ann. Oper. Res.*, pp. 1–44, 2022.
- [5] I. Akomea-Frimpong, D. Adeabah, D. Ofosu, and E. J. Tenakwah, "A review of studies on green finance of banks, research gaps and future directions," *J. Sustain. Financ. Invest.*, vol. 12, no. 4, pp. 1241–1264, 2022.
- [6] U. Atz, T. Van Holt, Z. Z. Liu, and C. C. Bruno, "Does sustainability generate better financial performance? review, meta-analysis, and propositions," *J. Sustain. Financ. Invest.*, vol. 13, no. 1, pp. 802–825, 2023.
- [7] J. W. Lee, "Green finance and sustainable development goals: The case of China," *Lee, Jung Wan (2020). Green Financ. Sustain. Dev. Goals Case China. J. Asian Financ. Econ. Bus.*, vol. 7, no. 7, pp. 577–586, 2020.
- [8] M. T. Musakwa and N. M. Odhiambo, "Remittance inflows and poverty nexus in Botswana: A multivariate approach," *J. Sustain. Financ. Invest.*, vol. 12, no. 2, pp. 475–489, 2022.
- [9] A. Brun, R. Cavender, and D. H. Kincade, "A luxury brand management framework built from historical review and case study analysis," *Int. J. Retail Distrib. Manag.*, vol. 43, no. 10–11, pp. 1083–1100, 2015.
- [10] A. Afzal, E. Rasoulinezhad, and Z. Malik, "Green finance and sustainable development in Europe," *Econ. Res. istraživanja*, vol. 35, no. 1, pp. 5150–5163, 2022.
- [11] S. Mohd and V. K. Kaushal, "Green finance: a step towards sustainable development," *MUDRA J. Financ. Account.*, vol. 5, no. 1, pp. 59–74, 2018.
- [12] F. M. Ogunyemi and A. O. Ishola, "Data-driven financial models for sustainable SME growth: Integrating green finance into small and medium enterprise strategies," 2024.
- [13] A. Edmans and M. Kacperczyk, "Sustainable finance," *Rev. Financ.*, vol. 26, no. 6, pp. 1309–1313, 2022.
- [14] D. Zhang, M. Mohsin, and F. Taghizadeh-Hesary, "Does green finance counteract the climate change mitigation: Asymmetric effect of renewable energy investment and R&D," *Energy Econ.*, vol. 113, p. 106183, 2022.
- [15] A. A. Adenle, H. Azadi, and J. Arbiol, "Global assessment of technological innovation for climate change adaptation and mitigation in developing world," *J. Environ. Manage.*, vol. 161, pp. 261–275, 2015.

- [16] L. Zhang, H. B. Saydaliev, and X. Ma, "Does green finance investment and technological innovation improve renewable energy efficiency and sustainable development goals," *Renew. Energy*, vol. 193, pp. 991–1000, 2022.
- [17] K. S. Dhayal, A. K. Giri, A. Kumar, A. Samadhiya, S. Agrawal, and R. Agrawal, "Can green finance facilitate Industry 5.0 transition to achieve sustainability? A systematic review with future research directions," *Environ. Sci. Pollut. Res.*, vol. 30, no. 46, pp. 102158–102180, 2023.
- [18] J. Hu, H. Chen, F. Dinis, and G. Xiang, "Nexus among green finance, technological innovation, green fiscal policy and CO₂ emissions: a conditional process analysis," *Ecol. Indic.*, vol. 154, p. 110706, 2023.
- [19] P. Warren, "Blind spots in climate finance for innovation," *Adv. Clim. Chang. Res.*, vol. 11, no. 1, pp. 60–64, 2020.
- [20] M. Liu *et al.*, "Driving toward sustainable cities: The interplay between Chinese emerging corporate ESG performance and climate finance in achieving low-carbon development," *Urban Clim.*, vol. 55, p. 101918, 2024.
- [21] D. Chirambo, "Integrating microfinance, climate finance and climate change adaptation: A Sub-Saharan Africa perspective," in *Climate change adaptation, resilience and hazards*, Springer, 2016, pp. 195–207.
- [22] E. Campiglio, A. Spiganti, and A. Wiskich, "Clean innovation, heterogeneous financing costs, and the optimal climate policy mix," *J. Environ. Econ. Manage.*, vol. 128, p. 103071, 2024.
- [23] B. Sedithippa Janarthanan, "Saving farm subsidies with smart climate interventions: the case of transition to a millet-based agriculture," *China Agric. Econ. Rev.*, vol. 16, no. 2, pp. 249–266, 2024.