Designing an Object Detection System as an Assistive Device for the Visually Impaired Based on Yolo V10 with Dual Camera
DOI:
https://doi.org/10.58812/wsist.v3i03.2209Keywords:
Audio Output, Dual Camera, Object Detection, Visually Impaired , YOLOv10Abstract
This research develops an object detection system to assist visually impaired individuals in navigating dynamic environments, including roads and indoor spaces. The system employs YOLO version 10 (YOLOv10) with dual cameras and provides audio output through a speaker. Using the Research and Development (R&D) method, the system detects six object classes—person, car, motorcycle, bicycle, table, and chair—in real-time. Testing was conducted with variations in distance, lighting conditions, delay, and direct trials with visually impaired users. Results show an effective detection range of up to 5 meters. Under bright indoor lighting, the average error was 8.97%, while outdoor morning conditions yielded 3.95%. In low-light and dark conditions, accuracy decreased significantly, with errors ranging from 60.33% to 100%. Detection delay ranged from 4.3 to 7.4 seconds. The system achieved a Macro F1-Score of 0.74, with the highest performance for cars (0.92) and the lowest for persons (0.62). Direct trials with five visually impaired participants showed an average accuracy of 92.58% and delays around 4.63 seconds. The system effectively delivers precise audio information, helping users recognize objects in front and behind, thereby enhancing safety and confidence during navigation.
References
[1] F. H. Gunawan, A. B. Laksono, and A. Bachri, “Rancang bangun alat bantu bagi penyandang tunanetra,” Semin. Nas. Fortei Reg. 7, pp. 35–40, 2020.
[2] R. R. N. Sulistyowati, “Sistem Pakar untuk Mendiagnosis Penyakit Mata Berbasis Web dengan Menggunakan Metode Forward Chaining,” SNESTIK Semin. Nas. Tek. Elektro, Sist. Inf. dan Tek. Inform., pp. 219–224, 2021.
[3] M. Aulia, E. Prihatini, and N. L. Husni, “Perancangan Kendali Alat Bantu Tunanetra Berbasis Fuzzy Logic,” J. Rekayasa Elektro Sriwij., vol. 1, no. 2, pp. 62–70, 2020, doi: se 10.36706/jres.v1i2.15.
[4] J. Kuswanto, “Implementasi (GaBlind) Alat Bantu Navigasi Tunanetra Menggunakan Sensor Max Sonar Berbasis Arduino,” Intechno J. Inf. Technol., vol. 1, no. 4, pp. 19–23, 2019.
[5] D. Aryani, A. I. Gunawan, R. Reski, K. Nisa, and A. Zubair, “Alat Bantu Jalan Tunanetra Menggunakan Sensor Light Detection and Ranging (LiDAR) Berbasis Arduino,” J. Teknol. Elekterika, vol. 20, no. 2, p. 98, 2023, doi: 10.31963/elekterika.v20i2.4587.
[6] R. Syahputra, A. Yusupa, and B. J. Sitompul, “Topi Peringatan Bahaya Penyandang Tunanetra Berbasis Mikrokontroller dengan Sensor Ultrasonik Menggunakan Metode Research and Development,” J. SAINTIKOM, vol. 23, no. 1, p. 221, 2024, doi: 10.53513/jis.v23i1.9591.
[7] I. Yusnilawati, F. Utaminingrum, and M. H. H. Ichsan, “Implementasi Connected Component Labeling untuk Deteksi Objek Penghalang Bagi Penyandang Tunanetra Berbasis Raspberry Pi,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, pp. 1318–1323, 2019. [Online]. Available: http://repository.ub.ac.id/14111/
[8] Y. An and H. S. Kim, “A systematic review of computer vision technology applied for individuals with disabilities,” J. Digit. Media Cult. Technol., vol. 3, no. 2, pp. 67–87, 2023, doi: 10.29056/jdmct.2023.12.01.
[9] . M. Yusup, A. F. Anugrah, D. D. Muslimah, S. M. W. N. Permana, and S. Yuliani, “Pendeteksian Objek Menggunakan OpenCV dan Metode YOLOv4-TINY untuk Membantu Tunanetra,” J. Comput. Sci. Inf. Technol., vol. 1, no. 2, pp. 59–68, 2024, doi: 10.59407/jcsit.v1i2.532.
[10] F. Indaryanto, A. Nugroho, and A. F. Suni, “Aplikasi Penghitung Jarak dan Jumlah Orang Berbasis YOLO Sebagai Protokol Kesehatan Covid-19,” Edu Komputika J., vol. 8, no. 1, pp. 31–38, 2021, doi: 10.15294/edukomputika.v8i1.47837.
[11] S. Fuady, N. Nehru, and G. Anggraeni, “Deteksi Objek Menggunakan Metode Single Shot Multibox Detector pada Alat Bantu Tongkat Tunanetra Berbasis Kamera,” J. Electr. Power Control Autom., vol. 3, no. 2, p. 39, 2020, doi: 10.33087/jepca.v3i2.38.
[12] J. Ilm. Komputasi, “Pembuatan Aplikasi Deteksi Objek Menggunakan TensorFlow Object Detection API dengan Memanfaatkan SSD MobileNet V2 Sebagai Model Pra-Terlatih,” J. Ilm. Komputasi, vol. 19, no. 3, pp. 421–430, 2020, doi: 10.32409/jikstik.19.3.68.
[13] A. Praptaningrum, “Penerapan Bahan Ajar Audio untuk Anak Tunanetra Tingkat SMP di Indonesia,” vol. 5, pp. 1–19, 2020.
[14] K. Rani, A. Rafikayati, and M. N. Jauhari, “Keterlibatan Orangtua dalam Penanganan Anak Berkebutuhan Khusus,” J. Abadimas Adi Buana, vol. 2, no. 1, pp. 55–64, 2018, doi: 10.36456/abadimas.v2.i1.a1636.
[15] J. Jumadi, Y. Yupianti, and D. Sartika, “Pengolahan Citra Digital untuk Identifikasi Objek Menggunakan Metode Hierarchical Agglomerative Clustering,” JST (Jurnal Sains dan Teknol.), vol. 10, no. 2, pp. 148–156, 2021, doi: 10.23887/jstundiksha.v10i2.33636.
[16] R. F. Muharram and A. Suryadi, “Implementasi artificial intelligence untuk deteksi masker secara realtime dengan TensorFlow dan SSD MobileNet berbasis Python,” Jurnal Widya, vol. 3, pp. 281–290, 2022.
[17] A. N. Sugandi and B. Hartono, “Implementasi Pengolahan Citra pada Quadcopter untuk Deteksi Manusia Menggunakan Algoritma YOLO,” Pros. 13th Ind. Res. Work. Natl. Semin., pp. 13–14, 2022.
[18] S. K. Bhandary, R. Dhakal, V. Sanghavi, and P. K. Verkicharlai, “Ambient light level varies with different locations and environmental conditions: Potential to impact myopia,” PLoS One, vol. 16, no. 7, pp. 1–13, 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Amalia Nabila, Farida Arinie Soelistianto, Isa Mahfudi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









