Smart Library Management System Using Face Recognition and RFID Based on Flask: Case Study of BBPPMPV BOE Malang
DOI:
https://doi.org/10.58812/wsist.v3i02.2180Keywords:
Smart Library , Face Recognition , LBPH, CNN, RFIDAbstract
This research aims to develop a Flask-based Smart Library system integrated with face recognition technology, RFID, and automated WhatsApp notifications to support library services at BBPPMPV BOE Malang. The face recognition system employs two methods: Local Binary Pattern Histogram (LBPH) and Convolutional Neural Network (CNN) for comparison. Testing results show that the LBPH method achieved a training accuracy of 98.77%, but its real-world recognition accuracy dropped to 39.77%. In contrast, the CNN method achieved a lower training accuracy of 69.11% but demonstrated more stable performance in real conditions with an average accuracy of 76.87%. RFID technology is implemented to automate the book borrowing and returning process through website integration, resulting in a time efficiency improvement of up to 74% compared to manual systems. Additionally, the system features real-time notification via WhatsApp using Venom Bot, which successfully delivers book transaction details accurately and consistently with the database records. The system is built using a Raspberry Pi 4 and the Flask framework and is accessed through a web-based interface. The implementation results show that the system significantly enhances the efficiency, security, and convenience of library services.
References
[1] A. G. N. Ramayanti and A. S. Aji, “Implementasi
Augmented Reality Pencarian Kategori Buku Rak Perpustakaan Berbasis Mobile,” J. TEKINKOM, vol. 6, no. 2, p. 2023, 2023, doi: 10.37600/tekinkom.v6i2.1030.
[2] L. Mardiana, H. T. Hidayat, and D. Jamilah, “Sistem Pendeteksi Informasi Buku yang dibaca di Perpustakaan menggunakan RFID,” vol. 5, no. 2, pp. 1–6, 2022.
[3] E. Suethanuwong and S. Sukkasame, “An Access Control System using RFID and Face Verification with QR Code-based Enrollment,” Inf. Technol. J., vol. 19, no. 2, pp. 15–31, 2023, doi: 10.14416/j.it.2023.v2.002.
[4] M. Kumar, K. Shishodiya, Y. S. Rajawat, and S. Nayak, “Smart library management system,” Spectr. Emerg. Sci., vol. 3, no. 1, pp. 30–32, 2023, doi: 10.55878/ses2023-3-1-6.
[5] J. Jumadi, Y. Yupianti, and D. Sartika, “Pengolahan Citra Digital Untuk Identifikasi Objek Menggunakan Metode Hierarchical Agglomerative Clustering,” JST (Jurnal Sains dan Teknol., vol. 10, no. 2, pp. 148–156, 2021, doi: 10.23887/jstundiksha.v10i2.33636.
[6] A. B. Bedkyale, H. V. Hatalge, R. S. Momin, R. S. Nirmale, and S. S. Patil, “TEACHER LAB ATTENDANCE USING FACE RECOGNITION,” no. 03, pp. 443–448, 2025.
[7] N. M. Saraswati, R. Cipta, S. Hariyono, and D. Chandra, “FACE RECOGNITION
MENGGUNAKAN METODE HAAR CASCADE CLASSIFIER FACE RECOGNITION
USING THE METHOD HAAR CASCADE CLASSIFIER AND LOCAL BINARY PATTERN
HISTOGRAM,” vol. 20, no. 3, pp. 1–6, 2023.
[8] I. A. Tarigan and A. Kurniawan, “Prototipe Pendeteksi dan Pengenalan Wajah Berbasis Web Menggunakan Algoritma Local Binary Pattern Histogram untuk Absensi,” Multinetics, vol. 8, no. 1, pp. 77–86, 2022, doi: 10.32722/multinetics.v8i1.4591.
[9] M. A. Gunawan, H. S. Purba, N. A. B. Saputra, N. Wiranda, and M. H. Adini, “Perancangan Pendeteksi Wajah dengan Metode Haar Cascade dan Local Binary Pattern Berbasis OpenCV,” Comput. Educ. Technol. J., vol. 4, no. 1, p. 7, 2024, doi: 10.20527/cetj.v4i1.12332.
[10] Y. Octavianus and D. Avianto, “Modifikasi Arsitektur dalam Convolutional Neural Network untuk Klasifikasi Batik Lampung dan Batik Yogyakarta Abstrak,” vol. 6, no. 1, pp. 522–535, 2025.
[11] D. Aldiani, G. Dwilestari, H. Susana, R. Hamonangan, and D. Pratama, “Implementasi Algoritma CNN dalam Sistem Absensi Berbasis Pengenalan Wajah,” J. Inform. Polinema, vol. 10, no. 2, pp. 197–202, 2024, doi: 10.33795/jip.v10i2.4852.
[12] B. H. Daulay, M. Jannah, and S. A. Pasaribu, “Sistem Keamanan Pintu Menggunakan E-KTP Berbasis Sensor RFID ( Radio Frequency Identification ),” vol. 01, pp. 31–41, 2024.
[13] I. Muzaki, M. I. Amal, and M. AlFarisi, “Smart Lock Door Berbasis Digital Menggunakan Rfid Rc522 Dan Microcontroller Arduino Nano,” Transient J. Ilm. Tek. Elektro, vol. 13, no. 2, pp. 75–81, 2024, doi: 10.14710/transient.v13i2.75-81.
[14] M. I. H. B, “Rfid Based Smart Library,” International J. Sci. Res. Eng. Manag., vol. 07, no. 07, pp. 1–9, 2023, doi: 10.55041/ijsrem24895.
[15] R. K. Ngantung and M. A. I. Pakereng, “Model Pengembangan Sistem Informasi Akademik Berbasis User Centered Design Menerapkan Framework Flask Python,” J. Media Inform. Budidarma, vol. 5, no. 3, p. 1052, 2021, doi: 10.30865/mib.v5i3.3054.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ambar Budiarti, Farida Arinie Soelistianto, Rachmad Saptono

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









