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 This research develops an object detection system to assist visually 

impaired individuals in navigating dynamic environments, including 

roads and indoor spaces. The system employs YOLO version 10 

(YOLOv10) with dual cameras and provides audio output through a 

speaker. Using the Research and Development (R&D) method, the 

system detects six object classes—person, car, motorcycle, bicycle, 

table, and chair—in real-time. Testing was conducted with variations 

in distance, lighting conditions, delay, and direct trials with visually 

impaired users. Results show an effective detection range of up to 5 

meters. Under bright indoor lighting, the average error was 8.97%, 

while outdoor morning conditions yielded 3.95%. In low-light and 

dark conditions, accuracy decreased significantly, with errors ranging 

from 60.33% to 100%. Detection delay ranged from 4.3 to 7.4 seconds. 

The system achieved a Macro F1-Score of 0.74, with the highest 

performance for cars (0.92) and the lowest for persons (0.62). Direct 

trials with five visually impaired participants showed an average 

accuracy of 92.58% and delays around 4.63 seconds. The system 

effectively delivers precise audio information, helping users recognize 

objects in front and behind, thereby enhancing safety and confidence 

during navigation. 
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1. INTRODUCTION 

The rapid advancement of artificial 

intelligence (AI) and computer vision has 

created new opportunities to develop 

assistive technologies for people with 

disabilities. Among them, object detection 

systems have emerged as essential solutions 

to enhance safety and independence for 

individuals with visual impairments. By 

leveraging deep learning algorithms, these 

systems can provide real-time information 

about the surrounding environment, enabling 

users to navigate more confidently and 

securely in dynamic situations. This 

technological innovation plays a crucial role 

in improving accessibility and inclusivity in 

society, particularly for the visually impaired, 

who often face significant mobility challenges 

in their daily lives [1]. 

In Indonesia, the number of people 

with visual impairments reaches 

approximately 1.5% of the total population, 

equivalent to more than four million 

individuals [2]. Limitations in vision affect 

various aspects of their daily activities, such 

as recognizing objects, avoiding obstacles, or 

crossing streets safely. Traditional assistive 

devices, such as canes or guide dogs, provide 
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limited support and often fail to deliver 

sufficient information about the spatial 

characteristics of objects in complex 

environments [3]. Therefore, innovative 

approaches are required to address these 

challenges by integrating advanced sensing 

and processing technologies into wearable 

assistive systems [4]. 

Previous studies have implemented 

object detection methods such as Connected 

Component Labeling and YOLOv4-Tiny to 

assist visually impaired individuals [6][7]. 

While these systems demonstrated promising 

results, they were constrained by limited 

accuracy, single-camera input, and 

insufficient adaptability to dynamic lighting 

and outdoor conditions. The lack of depth 

perception and spatial awareness also 

reduced their effectiveness in real-world 

scenarios, where accurate detection of object 

type, position, and distance is essential for 

user safety [8]. 

To overcome these limitations, this 

study introduces the design of an object 

detection system based on YOLOv10 

integrated with dual cameras. YOLOv10 was 

chosen due to its high accuracy and ability to 

perform real-time object detection, while the 

dual-camera setup enhances spatial 

perception and allows detection from both the 

front and rear directions. The system provides 

audio output through a speaker, delivering 

real-time object recognition results directly to 

users. By focusing on six classes of objects—

people, cars, motorcycles, bicycles, tables, and 

chairs—the system is expected to support 

visually impaired individuals in navigating 

both indoor and outdoor environments more 

effectively [9]. 

The implementation of YOLOv10 in 

this system is carried out using Raspberry Pi 

as the main processor, ensuring portability 

and efficiency. The research compares the 

performance of YOLOv10 with YOLOv4 as a 

benchmark, analyzing detection accuracy, 

delay, and robustness under various 

environmental conditions. Furthermore, 

testing is conducted not only in controlled 

laboratory scenarios but also through direct 

trials with visually impaired respondents to 

evaluate usability and effectiveness in real-life 

situations [10]. 

This study contributes to the 

development of modern assistive devices that 

combine deep learning and embedded 

systems to improve accessibility for the 

visually impaired. The integration of dual-

camera object detection and audio feedback is 

expected to increase user independence, 

safety, and confidence during navigation. 

Moreover, the comparison of detection 

performance between YOLOv10 and earlier 

versions provides valuable insights for future 

improvements in computer vision–based 

assistive technologies. 

 

2. LITERATURE REVIEW 

2.1 Object Detection 

Object detection is a computer vision 

technique used to identify and localize objects 

within digital images or video frames. Unlike 

simple image classification, which only 

determines the presence of an object, object 

detection provides spatial information by 

drawing bounding boxes around detected 

objects. This capability is particularly 

important in assistive technology for visually 

impaired individuals, where accurate 

identification and localization of surrounding 

objects directly contribute to safe navigation 

[11]. 

2.2 You Only Look Once (YOLO) 

YOLO (You Only Look Once) is a 

deep learning–based object detection 

algorithm designed to achieve fast and 

accurate detection in a single processing step. 

Unlike region-based methods that generate 

candidate regions before classification, YOLO 

divides an image into grids and directly 

predicts bounding boxes and class 

probabilities for each grid cell. This approach 

significantly reduces computation time while 

maintaining high accuracy [12]. 

Over the years, YOLO has undergone several 

improvements, from YOLOv1 to the latest 

versions. YOLOv4 introduced performance 

optimizations for training on limited 

hardware, while YOLOv5 emphasized 

implementation flexibility with PyTorch. 

YOLOv7 and YOLOv8 further enhanced 



West Science Information System and Technology       168

   

Vol. 3, No. 03, December 2025: pp. 166-175 

detection accuracy and multi-scale object 

recognition. The most recent version, 

YOLOv10, offers improvements in inference 

speed, energy efficiency, and robustness in 

complex environments. These advantages 

make YOLOv10 particularly relevant for real-

time assistive applications such as wearable 

navigation devices for visually impaired users 

[13][14].  

2.3 Dual Camera Systems 

Dual camera systems are increasingly 

adopted in computer vision applications to 

enhance spatial perception and improve 

detection reliability. By combining two 

camera inputs, systems can capture images 

from different angles or directions, enabling 

better object tracking and depth estimation. 

For visually impaired assistive tools, dual 

cameras provide a wider field of view, 

reducing blind spots and increasing safety 

during navigation [15]. 

The integration of dual cameras with 

deep learning–based detection ensures that 

objects appearing both in the front and rear 

can be identified in real-time. This approach 

not only improves recognition accuracy but 

also supports multimodal outputs, such as 

audio feedback, that help users receive more 

comprehensive environmental information 

[16]. 

2.4 Raspberry Pi in Computer Vision 

Applications 

Raspberry Pi is a compact, low-cost, 

and versatile microcontroller widely used in 

embedded system development, including 

computer vision applications. Equipped with 

sufficient processing power to run 

lightweight deep learning models, Raspberry 

Pi enables the deployment of portable object 

detection systems. Combined with cameras 

and external modules such as speakers, it can 

provide real-time assistive functionality 

without relying on high-performance servers 

[17]. 

The integration of Raspberry Pi with 

YOLO-based object detection models has 

been demonstrated in several studies, 

showing that it is capable of balancing 

performance, portability, and cost-

effectiveness. This makes it a strong candidate 

for developing assistive technologies aimed at 

supporting the independence of visually 

impaired individuals [18]. 

 

3. METHODS 

This research is categorized as 

Research and Development (R&D), focusing 

on the design and implementation of an object 

detection system as an assistive tool for 

visually impaired individuals. The system 

integrates several hardware and software 

components to enable real-time detection and 

audio feedback. 

The hardware of the system was built 

using a Raspberry Pi 4 as the central 

processing unit. This device was chosen 

because of its portability and sufficient 

computational power to execute lightweight 

deep learning models. Two camera modules 

were employed as input devices, positioned at 

the front and rear to create a dual camera 

system. This configuration allows the device 

to capture a wider field of view, thereby 

increasing spatial awareness for the user. A 

mini speaker was added to deliver real-time 

audio feedback about detected objects, while 

the power supply module was equipped with 

voltage regulation to ensure the stable 

performance of all hardware components. The 

entire hardware configuration was designed 

to be compact and wearable, making it 

suitable for everyday use by visually 

impaired individuals. 

The software component was 

implemented using the YOLOv10 object 

detection algorithm, selected for its high 

accuracy and real-time processing 

capabilities. The system was programmed in 

Python and executed on the Raspberry Pi 

platform. YOLOv10 was trained to recognize 

six object classes: person, car, motorcycle, 

bicycle, table, and chair. These classes were 

chosen because they represent common 

obstacles in both indoor and outdoor 

environments. To provide comparative 

evaluation, the YOLOv4 algorithm was also 

integrated as a benchmark model. Once the 

objects were detected, the results were 

processed and transmitted to the audio 

output system, enabling users to receive 
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direct spoken feedback about their 

surroundings. 

The overall system workflow begins 

with image capture from the dual cameras. 

The video frames obtained are processed by 

the YOLOv10 detection model, which 

identifies and classifies the objects present in 

the scene. The detection results are then 

processed by the Raspberry Pi to determine 

the type and position of the objects. 

Subsequently, the system translates this 

information into audio output that is 

delivered through the speaker. This process 

enables visually impaired users to receive 

real-time awareness of objects in their 

environment, both in front and behind them, 

thus improving navigation safety and 

independence. 

Data collection was conducted 

through direct implementation of the system 

in both controlled and real-world 

environments. In controlled testing, objects 

were placed at different distances and angles 

indoors to measure the accuracy and 

detection delay of the system. In outdoor 

testing, the system was used by visually 

impaired respondents to evaluate 

performance under real navigation 

conditions. During both scenarios, object 

detection results, accuracy rates, false 

detection cases, and delay times were 

recorded for further analysis. 

The data collected from system 

testing was analyzed quantitatively. 

Performance parameters such as detection 

accuracy, false positive rate, false negative 

rate, and processing delay were compared 

between YOLOv10 and YOLOv4. This 

comparison highlighted the improvements 

achieved by YOLOv10 in terms of accuracy 

and robustness in complex environments. 

Additionally, qualitative feedback from 

visually impaired respondents was taken into 

account to assess the practicality, usability, 

and comfort of the system in supporting 

independent navigation. 

 

4. RESULTS AND DISCUSSION 

4.1 YOLOv10 Object Detection Results 

Based on Table 1, the YOLOv10 

model was tested to evaluate its ability to 

detect six object categories, namely person, 

car, motorcycle, bicycle, chair, and table, 

under bright lighting conditions at a distance 

of 5 meters (both indoor and outdoor). The 

detection performance was assessed using 

confidence scores for each object class. 

The recognition results showed that 

the YOLOv10 model achieved the highest 

accuracy in detecting the bicycle, with a 

confidence score of 95%, indicating strong 

reliability in identifying this class. The 

motorcycle (94%), person (93%), and car (92%) 

categories also demonstrated high accuracy 

levels, proving the robustness of the model in 

real-world scenarios. The chair category 

achieved a moderate accuracy with 86%, 

while the table recorded the lowest score at 

57%, suggesting detection challenges for this 

object class. 

 

 

Table 1. YOLOv10 Object Detection Results 

No Object Detection Result Confidence Score (%) 

1 Person Detected 93 

2 Car Detected 92 

3 Motorcycle Detected 94 

4 Bicycle Detected 95 

5 Chair Detected 86 

6 Table Detected 57 

From the test results shown in Table 

1, it is evident that YOLOv10 delivers varying 

performance depending on the object 

category. Objects with simpler shapes and 

stronger contrast against the background, 

such as bicycles and motorcycles, tend to 

achieve higher confidence scores. On the 

other hand, objects with complex structures or 

lower contrast, such as tables, produce lower 

detection accuracy. 
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4.2 Results of Distance Change Testing 

The distance change testing was 

conducted both indoors and outdoors using 

the front and rear cameras under bright 

lighting conditions with distances ranging 

from 1 to 10 meters. Based on the results, 

several key findings can be highlighted: 

 

4.2.1 Indoor Testing (Front Camera) 

The front camera indoors showed 

relatively stable performance at distances up 

to 6 meters, with error values consistently 

below 10%. Accuracy began to degrade at 

longer ranges, particularly at 9–10 meters, 

where errors increased up to 22% depending 

on the object type. 

4.2.2   Indoor Testing (Rear Camera) 

Similar to the front camera, the rear 

camera indoors maintained good accuracy at 

short-to-medium ranges (1–6 meters) with 

error rates between 2–10%. However, at 

longer distances (7–10 meters), errors became 

more significant, especially for objects with 

complex shapes such as chairs, where errors 

exceeded 30%. 

4.2.3 Outdoor Testing (Front Camera) 

The outdoor front camera produced 

accurate readings at 1–5 meters with error 

values below 10%. However, performance 

dropped significantly beyond 6 meters, where 

errors ranged from 15–50%, especially for 

motorcycles and bicycles. Environmental 

factors such as sunlight, shadows, and 

background objects strongly influenced 

accuracy. 

4.2.4 Outdoor Testing (Rear Camera) 

The outdoor rear camera exhibited the 

highest variability. While performance was 

still acceptable at close ranges (1–3 meters), 

errors increased rapidly at longer distances, 

reaching 20–35% for motorcycles and bicycles. 

This indicates the rear camera is more 

sensitive to environmental interference and 

object positioning. 

 

4.3 Test Results Effect of Light Intensity 

The effect of light intensity was tested 

at an effective distance of 5 meters under 

various conditions both indoors (very bright, 

bright, dim, dark, very dark) and outdoors 

(morning, noon, afternoon, night) using the 

front and rear cameras. 

4.3.1 Indoor Testing (Front Camera) 

The front camera indoors performed 

well under very bright and bright conditions, 

with errors ranging from 1.2–10%. However, 

accuracy decreased significantly in dim and 

dark lighting, where errors reached 36–68%. 

In very dark conditions, detection failed 

entirely, resulting in 100% error. 

4.3.2 Indoor Testing (Rear Camera) 

The rear camera showed similar 

characteristics, maintaining acceptable 

accuracy under very bright and bright 

lighting with errors below 15%. Performance 

dropped under dim and dark conditions, with 

errors rising to 42–70%, and detection also 

failed in very dark conditions (100% error). 

4.3.3 Outdoor Testing (Front Camera) 

The outdoor front camera achieved 

excellent accuracy in daylight conditions 

(morning, noon, afternoon), with errors 

between 0–11%. However, during night 

testing, accuracy dropped sharply across all 

objects, producing errors up to 50–88%. 

4.3.4 Outdoor Testing (Rear Camera) 

The outdoor rear camera followed the 

same trend, where accuracy remained stable 

during daytime (errors between 2–11%) but 

dropped drastically at night, with errors 

exceeding 80%, especially for moving objects 

such as motorcycles and bicycles. 

 

4.4 Test Results of the Effect When Users 

Take One Step 

The effect of user movement was tested 

by simulating a single walking step at the 

effective distance of 5 meters, both indoors 

and outdoors, using the front and rear 

cameras. The goal was to observe how minor 

user movement impacts object distance 

detection. 

4.4.1 Indoor Testing (Front Camera) 

The front camera indoors showed small 

deviations when the user moved one step. 

Error values ranged between 4–13%, with the 

chair having the lowest error (4%) and the 

table the highest (13%). This indicates that the 

system can still maintain acceptable accuracy 

despite user movement. 
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4.4.2 Indoor Testing (Rear Camera) 

The rear camera indoors produced 

slightly higher variations, with error rates 

between 4–12%. The table was detected most 

accurately (4% error), while the chair 

produced the highest error (12%). These 

results suggest that the rear camera is 

somewhat less stable than the front camera in 

compensating for user movement. 

4.4.3 Outdoor Testing (Front Camera) 

The outdoor front camera 

demonstrated very high accuracy across all 

objects, with error values consistently below 

5%. The human object was detected perfectly 

(0% error), while vehicles such as 

motorcycles, cars, and bicycles showed 

minimal deviations (2.8–4.2% error). This 

highlights the robustness of the front camera 

outdoors under normal lighting conditions. 

4.4.4 Outdoor Testing (Rear Camera) 

The outdoor rear camera also achieved 

low error values, ranging from 1.4–6%. 

Among the tested objects, motorcycles were 

detected with the highest accuracy (1.4% 

error), while bicycles produced the largest 

deviation (6% error). Despite this, the overall 

performance remained highly reliable. 

 

4.5 Delay Parameter Test Results  

The delay parameter testing was 

conducted to evaluate the system’s response 

time in detecting and announcing objects 

through audio output. The tests involved 

sequential detection of two different objects, 

both indoors and outdoors, using the front 

and rear cameras. The delay was measured as 

the time difference between the object’s 

appearance in the camera frame and the audio 

response generated by the system. 

4.5.1 Indoor Testing (Front Camera) 

The front camera indoors showed 

delays ranging from 3 to 6 seconds. The fastest 

response occurred when detecting a chair–

table sequence (3–4 seconds), while the 

slowest was during table–chair transitions (6 

seconds). Overall, the system responded 

consistently but exhibited minor variations 

depending on the object pair being detected. 

4.5.2 Indoor Testing (Rear Camera) 

The rear camera indoors produced 

slightly longer delays, varying between 3 and 

7 seconds. The fastest detection occurred in 

the table–chair sequence (3–5 seconds), while 

the slowest was table–chair and person–table 

transitions (7 seconds). This indicates that the 

rear camera requires slightly more processing 

time compared to the front camera in indoor 

environments. 

4.5.3 Outdoor Testing (Front Camera) 

The outdoor front camera recorded 

delays ranging from 3 to 9 seconds. The fastest 

response occurred in the bicycle–person 

sequence (3 seconds), while the longest delay 

was observed in the car–motorcycle sequence 

(9 seconds). Variability was higher outdoors 

due to environmental factors such as lighting 

and object movement. 

4.5.4 Outdoor Testing (Rear Camera) 

The rear camera outdoors produced 

delays of 4 to 10 seconds, making it the 

slowest among all conditions. The shortest 

delay was in the bicycle–person sequence (4–

5 seconds), while the longest was in person–

car transitions (10 seconds). These findings 

suggest that outdoor conditions significantly 

affect system performance, particularly with 

the rear camera. 

 

4.6 Latency Test Results 

Latency and frame rate testing were 

carried out to evaluate the system’s 

performance in terms of processing speed and 

response time. The experiments were 

conducted at an effective distance of 5 meters 

under bright lighting conditions, using six 

different objects (person, table, chair, 

motorcycle, car, and bicycle) with both front 

and rear cameras, indoors and outdoors. 

The latency testing showed that the front 

camera achieved better performance 

compared to the rear camera. On the front 

camera, the average latency ranged from 3900 

ms for the chair to 5480 ms for the car. The 

fastest response was recorded for the chair 

(3900 ms / 130.0 ms per frame), while the car 

exhibited the highest latency (5480 ms / 182.7 

ms per frame). These results indicate that 

simpler objects such as people and chairs 

were detected faster, whereas larger or more 

complex objects, including cars and 

motorcycles, required longer detection times. 
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On the other hand, the rear camera 

showed higher latency values, ranging from 

4500 ms for the chair to 6070 ms for the car. 

Similar to the front camera, the chair was 

detected the fastest (4500 ms / 150.0 ms per 

frame), while the car had the slowest response 

(6070 ms / 202.3 ms per frame). Overall, the 

rear camera consistently exhibited longer 

latency compared to the front camera, 

suggesting higher processing overhead or 

reduced efficiency in object recognition. 

 

4.7 Model Evaluation Test Results 

Model evaluation was conducted to 

assess the performance of YOLOv10 in waste 

classification using key metrics such as 

Precision, Recall, F1-Score, and Mean Average 

Precision (mAP). The training process was 

carried out with an image size of 640, 100 

epochs, and a batch size of 16. Figure 4.9 

presents the confusion matrix, which 

illustrates the model’s ability to predict each 

class during training and provides a clear 

overview of classification accuracy for all 

categories. 

 

Figure 1. Confusion Matrix 
 

The evaluation of the YOLOv10 

model demonstrated varying performance 

different object classes, as reflected in the 

metrics of Accuracy, Precision, Recall, and F1-

Score. 

 

Table 2. System Performance 

Class Accuracy Precision Recall F1-Score 

Table 91% 0.79 0.62 0.69 

Chair 90.5% 0.759 0.63 0.68 

Person 80.5% 0.459 0.96 0.62 

Car 97.6% 0.988 0.87 0.92 

Motor 94.2% 0.911 0.72 0.80 

Bicycle 92.83% 0.952 0.60 0.73 

For the bike class, the model achieved 

good accuracy (92.83%) and very high 

precision (0.952), showing most predicted 

bikes were correct. However, recall was only 

0.60, meaning 40% of actual bikes were 

missed, indicating the model prioritizes 

precision over sensitivity. 

For the car class, performance was the 

best overall, with 97.6% accuracy, 0.988 

precision, and 0.87 recall (F1-Score 0.92). This 

shows consistent and reliable detection with 

minimal errors. The chair and table classes 

showed moderate performance, with 

accuracies around 90–91%, precision near 

0.76–0.79, and recall around 0.62–0.63. The 

relatively low recall indicates the model 

struggles with detecting these objects, likely 

due to visual complexity and similarity with 

other furniture. 
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For the motorcycle class, results were 

strong, with 94.2% accuracy, 0.911 precision, 

and 0.72 recall (F1-Score 0.80). The system 

detects motorcycles well but still misses 

nearly 30% of them. The person class had the 

weakest balance. Recall was very high (0.96), 

but precision was very low (0.459), leading to 

frequent false positives and the lowest F1-

Score (0.62). This suggests difficulty 

distinguishing people from other objects. 

At the overall level, the model 

reached precision and recall of 0.733 each, 

with a Macro F1-Score of 0.74. It performs best 

on structured objects (cars, motorcycles) but 

struggles with variable or complex shapes 

(people, chairs, tables). 

 

4.8 Results of Device Testing on Users 

 

 

Table 3. Average Performance Results on Respondents 

Respondent Avg Distance Avg Accuracy Avg Delay 

Respondent 1 4.76 m 95.13% 3.62 s 

Respondent 2 4.66 m 93.15% 4.06 s 

Respondent 3 4.64 m 92.72% 3.34 s 

Respondent 4 4.64 m 87.14% 3.59 s 

Respondent 5 4.57 m 91.16% 3.81 s 

Average 4.65 m 91.86% 3.68 s 

Device testing with blind users 

demonstrated strong overall performance, 

achieving an average accuracy of 91.86%, a 

detection distance of 4.65 meters, and a delay 

of 3.68 seconds. In indoor trials, the front 

camera showed excellent results in detecting 

people, reaching up to 100% accuracy, while 

the rear camera offered more balanced 

performance, particularly for tables with an 

accuracy of 87.4% compared to 83.64% on the 

front camera. Outdoor testing also showed 

high accuracy, with human detection 

consistently above 97% and vehicles above 

94%, although bicycle detection remained 

weaker at around 85–90% with higher delays. 

Between the two cameras, the rear camera 

delivered more consistent results outdoors. 

Across respondents, slight variations were 

observed, with Respondent 1 achieving the 

highest accuracy of 95.13%, Respondent 3 

recording the fastest delay of 3.34 seconds, 

and Respondent 4 showing the lowest 

accuracy at 87.14%. User feedback highlighted 

the system’s effectiveness, especially the 

audio output that supported navigation, but 

also pointed out issues with device weight 

and volume levels indoors. Overall, the 

system proved effective in assisting 

navigation, combining reliable detection with 

acceptable delay, while further improvements 

are needed in reducing device weight and 

integrating adaptive audio features for 

enhanced usability. 

 

5. CONCLUSION 

The development of an object 

detection system based on YOLOv10 with 

dual cameras as an assistive tool for the 

visually impaired was successfully 

implemented and tested. Distance testing 

showed that 5 meters was the most effective 

range, with a low error rate across conditions 

(front camera indoor 2.4%, outdoor 5.3%; rear 

camera indoor 3.4%, outdoor 4.9%). Light 

intensity had a significant effect on 

performance, where indoor accuracy was 

highest under very bright conditions (1037 

lux, error rate 8.97%), but degraded 

drastically in dark environments, reaching 

100% error at 0 lux. Outdoor testing achieved 

the best results in the morning (6695 lux, error 

rate 3.95%), while at night (9 lux), error rates 

increased up to 69.15%. 

Latency analysis revealed delays 

ranging from 4.3 to 6.8 seconds, with the front 

camera performing faster (4703 ms) compared 

to the rear camera (5258 ms). Object-wise, the 

lowest latency was achieved for chairs (13.3%) 

and people (12.6%). Frame rate measurements 

showed the front camera achieved 156.7 

ms/frame, while the rear camera reached 175.3 

ms/frame. 
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In terms of object recognition, 

YOLOv10 achieved a true positive rate (TPR) 

of 96% for people, indicating strong 

performance in human detection. Vehicles 

such as cars and motorcycles showed 

balanced results with TPRs of 87% and 72%, 

while bicycles performed weaker at 60%. 

Chairs and tables also showed moderate 

results at 63% and 62%. The model achieved a 

Macro F1-Score of 0.74 (74%), with overall 

precision and recall of 73.3%, indicating solid 

overall performance. Accuracy analysis 

showed the highest accuracy for cars (97.6%), 

followed by motorcycles (94.2%), bicycles 

(92.83%), chairs (90.5%), and people (80.5%). 

Finally, user testing with five blind 

respondents demonstrated strong real-world 

performance, achieving an average accuracy 

of 91.86%, an average detection distance of 

4.65 meters, and an average delay of 3.68 

seconds. These results confirm that the 

YOLOv10-based dual camera system is 

effective in assisting navigation for visually 

impaired users, while further improvements 

are recommended through dataset expansion 

and the inclusion of additional obstacle types

 

REFERENCES 
[1]      F. H. Gunawan, A. B. Laksono, and A. Bachri, “Rancang bangun alat bantu bagi penyandang tunanetra,” 

Semin. Nas. Fortei Reg. 7, pp. 35–40, 2020. 

[2]   R. R. N. Sulistyowati, “Sistem Pakar untuk Mendiagnosis Penyakit Mata Berbasis Web dengan 

Menggunakan Metode   Forward Chaining,” SNESTIK Semin. Nas. Tek. Elektro, Sist. Inf. dan Tek. 

Inform., pp. 219–224, 2021. 

[3]    M. Aulia, E. Prihatini, and N. L. Husni, “Perancangan Kendali Alat Bantu Tunanetra Berbasis Fuzzy 

Logic,” J. Rekayasa Elektro Sriwij., vol. 1, no. 2, pp. 62–70, 2020, doi: se 10.36706/jres.v1i2.15. 

[4]       J. Kuswanto, “Implementasi (GaBlind) Alat Bantu Navigasi Tunanetra Menggunakan Sensor Max Sonar 

Berbasis Arduino,”   Intechno J. Inf. Technol., vol. 1, no. 4, pp. 19–23, 2019. 

[5]  D. Aryani, A. I. Gunawan, R. Reski, K. Nisa, and A. Zubair, “Alat Bantu Jalan Tunanetra Menggunakan 

Sensor Light Detection and Ranging (LiDAR) Berbasis Arduino,” J. Teknol. Elekterika, vol. 20, no. 2, p. 

98, 2023, doi: 10.31963/elekterika.v20i2.4587. 

[6]     R. Syahputra, A. Yusupa, and B. J. Sitompul, “Topi Peringatan Bahaya Penyandang Tunanetra Berbasis 

Mikrokontroller dengan Sensor Ultrasonik Menggunakan Metode Research and Development,” J. 

SAINTIKOM, vol. 23, no. 1, p. 221, 2024, doi: 10.53513/jis.v23i1.9591. 

[7]  I. Yusnilawati, F. Utaminingrum, and M. H. H. Ichsan, “Implementasi Connected Component Labeling 

untuk Deteksi Objek Penghalang Bagi Penyandang Tunanetra Berbasis Raspberry Pi,” J. Pengemb. 

Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, pp. 1318–1323, 2019. [Online]. Available: 

http://repository.ub.ac.id/14111/ 

[8]     Y. An and H. S. Kim, “A systematic review of computer vision technology applied for individuals with 

disabilities,” J. Digit. Media Cult. Technol., vol. 3, no. 2, pp. 67–87, 2023, doi: 10.29056/jdmct.2023.12.01. 

[9]    . M. Yusup, A. F. Anugrah, D. D. Muslimah, S. M. W. N. Permana, and S. Yuliani, “Pendeteksian Objek 

Menggunakan OpenCV dan Metode YOLOv4-TINY untuk Membantu Tunanetra,” J. Comput. Sci. Inf. 

Technol., vol. 1, no. 2, pp. 59–68, 2024, doi: 10.59407/jcsit.v1i2.532. 

[10]     F. Indaryanto, A. Nugroho, and A. F. Suni, “Aplikasi Penghitung Jarak dan Jumlah Orang Berbasis 

YOLO Sebagai Protokol Kesehatan Covid-19,” Edu Komputika J., vol. 8, no. 1, pp. 31–38, 2021, doi: 

10.15294/edukomputika.v8i1.47837. 

[11] S. Fuady, N. Nehru, and G. Anggraeni, “Deteksi Objek Menggunakan Metode Single Shot Multibox 

Detector pada Alat Bantu Tongkat Tunanetra Berbasis Kamera,” J. Electr. Power Control Autom., vol. 3, 

no. 2, p. 39, 2020, doi: 10.33087/jepca.v3i2.38. 

[12] J. Ilm. Komputasi, “Pembuatan Aplikasi Deteksi Objek Menggunakan TensorFlow Object Detection API 

dengan Memanfaatkan SSD MobileNet V2 Sebagai Model Pra-Terlatih,” J. Ilm. Komputasi, vol. 19, no. 

3, pp. 421–430, 2020, doi: 10.32409/jikstik.19.3.68. 

[13]    A. Praptaningrum, “Penerapan Bahan Ajar Audio untuk Anak Tunanetra Tingkat SMP di Indonesia,” 

vol. 5, pp. 1–19, 2020. 

[14] K. Rani, A. Rafikayati, and M. N. Jauhari, “Keterlibatan Orangtua dalam Penanganan Anak 

Berkebutuhan Khusus,” J. Abadimas Adi Buana, vol. 2, no. 1, pp. 55–64, 2018, doi: 

10.36456/abadimas.v2.i1.a1636. 



West Science Information System and Technology       175

   

Vol. 3, No. 03, December 2025: pp. 166-175 

[15] J. Jumadi, Y. Yupianti, and D. Sartika, “Pengolahan Citra Digital untuk Identifikasi Objek Menggunakan 

Metode    Hierarchical Agglomerative Clustering,” JST (Jurnal Sains dan Teknol.), vol. 10, no. 2, pp. 148–

156, 2021, doi: 10.23887/jstundiksha.v10i2.33636. 

[16] R. F. Muharram and A. Suryadi, “Implementasi artificial intelligence untuk deteksi masker secara 

realtime dengan TensorFlow dan SSD MobileNet berbasis Python,” Jurnal Widya, vol. 3, pp. 281–290, 

2022. 

[17] A. N. Sugandi and B. Hartono, “Implementasi Pengolahan Citra pada Quadcopter untuk Deteksi 

Manusia Menggunakan    Algoritma YOLO,” Pros. 13th Ind. Res. Work. Natl. Semin., pp. 13–14, 2022. 

[18] S. K. Bhandary, R. Dhakal, V. Sanghavi, and P. K. Verkicharlai, “Ambient light level varies with different 

locations and   environmental conditions: Potential to impact myopia,” PLoS One, vol. 16, no. 7, pp. 1–

13, 2021. 

 


