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This research develops an object detection system to assist visually
impaired individuals in navigating dynamic environments, including
roads and indoor spaces. The system employs YOLO version 10
(YOLOV10) with dual cameras and provides audio output through a
speaker. Using the Research and Development (R&D) method, the
system detects six object classes—person, car, motorcycle, bicycle,
table, and chair—in real-time. Testing was conducted with variations
in distance, lighting conditions, delay, and direct trials with visually
impaired users. Results show an effective detection range of up to 5
meters. Under bright indoor lighting, the average error was 8.97%,
while outdoor morning conditions yielded 3.95%. In low-light and
dark conditions, accuracy decreased significantly, with errors ranging
from 60.33% to 100%. Detection delay ranged from 4.3 to 7.4 seconds.
The system achieved a Macro F1-Score of 0.74, with the highest
performance for cars (0.92) and the lowest for persons (0.62). Direct
trials with five visually impaired participants showed an average
accuracy of 92.58% and delays around 4.63 seconds. The system
effectively delivers precise audio information, helping users recognize
objects in front and behind, thereby enhancing safety and confidence
during navigation.
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1. INTRODUCTION

The rapid advancement of artificial
intelligence (AI) and computer vision has
created new opportunities to develop
assistive technologies for people with
disabilities. Among them, object detection
systems have emerged as essential solutions
to enhance safety and independence for
individuals with visual impairments. By
leveraging deep learning algorithms, these
systems can provide real-time information
about the surrounding environment, enabling
users to navigate more confidently and
securely in dynamic situations. This

technological innovation plays a crucial role
in improving accessibility and inclusivity in
society, particularly for the visually impaired,
who often face significant mobility challenges
in their daily lives [1].

In Indonesia, the number of people
with visual impairments reaches
approximately 1.5% of the total population,
equivalent to more than four million
individuals [2]. Limitations in vision affect
various aspects of their daily activities, such
as recognizing objects, avoiding obstacles, or
crossing streets safely. Traditional assistive
devices, such as canes or guide dogs, provide
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limited support and often fail to deliver
sufficient information about the spatial
characteristics of objects in complex
environments [3]. Therefore, innovative
approaches are required to address these
challenges by integrating advanced sensing
and processing technologies into wearable
assistive systems [4].

Previous studies have implemented
object detection methods such as Connected
Component Labeling and YOLOv4-Tiny to
assist visually impaired individuals [6][7].
While these systems demonstrated promising
results, they were constrained by limited
accuracy,  single-camera  input, and
insufficient adaptability to dynamic lighting
and outdoor conditions. The lack of depth
perception and spatial awareness also
reduced their effectiveness in real-world
scenarios, where accurate detection of object
type, position, and distance is essential for
user safety [8].

To overcome these limitations, this
study introduces the design of an object
detection system based on YOLOv10
integrated with dual cameras. YOLOv10 was
chosen due to its high accuracy and ability to
perform real-time object detection, while the
dual-camera  setup  enhances  spatial
perception and allows detection from both the
front and rear directions. The system provides
audio output through a speaker, delivering
real-time object recognition results directly to
users. By focusing on six classes of objects—
people, cars, motorcycles, bicycles, tables, and
chairs—the system is expected to support
visually impaired individuals in navigating
both indoor and outdoor environments more
effectively [9].

The implementation of YOLOv10 in
this system is carried out using Raspberry Pi
as the main processor, ensuring portability
and efficiency. The research compares the
performance of YOLOv10 with YOLOvV4 as a
benchmark, analyzing detection accuracy,
delay, and robustness under various
environmental conditions. Furthermore,
testing is conducted not only in controlled
laboratory scenarios but also through direct
trials with visually impaired respondents to

evaluate usability and effectiveness in real-life
situations [10].

This study contributes to the
development of modern assistive devices that
combine deep learning and embedded
systems to improve accessibility for the
visually impaired. The integration of dual-
camera object detection and audio feedback is
expected to increase user independence,
safety, and confidence during navigation.
Moreover, the comparison of detection
performance between YOLOvV10 and earlier
versions provides valuable insights for future
improvements in computer vision-based
assistive technologies.

2. LITERATURE REVIEW

2.1 Object Detection

Object detection is a computer vision
technique used to identify and localize objects
within digital images or video frames. Unlike
simple image classification, which only
determines the presence of an object, object
detection provides spatial information by
drawing bounding boxes around detected
objects. This capability is particularly
important in assistive technology for visually
impaired individuals, where accurate
identification and localization of surrounding
objects directly contribute to safe navigation
[11].

2.2 You Only Look Once (YOLO)

YOLO (You Only Look Once) is a
deep learning-based object detection
algorithm designed to achieve fast and
accurate detection in a single processing step.
Unlike region-based methods that generate
candidate regions before classification, YOLO
divides an image into grids and directly
predicts bounding boxes and class
probabilities for each grid cell. This approach
significantly reduces computation time while
accuracy [12].
Over the years, YOLO has undergone several
improvements, from YOLOv1 to the latest
versions. YOLOv4 introduced performance

maintaining high

optimizations for training on limited
hardware, while YOLOv5 emphasized
implementation flexibility with PyTorch.
YOLOv7 and YOLOvS8 further enhanced
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detection accuracy and multi-scale object
recognition. The most recent version,
YOLOV10, offers improvements in inference
speed, energy efficiency, and robustness in
complex environments. These advantages
make YOLOV10 particularly relevant for real-
time assistive applications such as wearable
navigation devices for visually impaired users
[13][14].

2.3 Dual Camera Systems

Dual camera systems are increasingly
adopted in computer vision applications to
enhance spatial perception and improve
detection reliability. By combining two
camera inputs, systems can capture images
from different angles or directions, enabling
better object tracking and depth estimation.
For visually impaired assistive tools, dual
cameras provide a wider field of view,
reducing blind spots and increasing safety
during navigation [15].

The integration of dual cameras with
deep learning-based detection ensures that
objects appearing both in the front and rear
can be identified in real-time. This approach
not only improves recognition accuracy but
also supports multimodal outputs, such as
audio feedback, that help users receive more
comprehensive environmental information
[16].

2.4 Raspberry Pi in Computer Vision
Applications

Raspberry Pi is a compact, low-cost,
and versatile microcontroller widely used in
embedded system development, including
computer vision applications. Equipped with
sufficient processing power to run
lightweight deep learning models, Raspberry
Pi enables the deployment of portable object
detection systems. Combined with cameras
and external modules such as speakers, it can
provide real-time assistive functionality
without relying on high-performance servers
[17].

The integration of Raspberry Pi with
YOLO-based object detection models has
been demonstrated in several studies,
showing that it is capable of balancing
performance,  portability, = and  cost-
effectiveness. This makes it a strong candidate
for developing assistive technologies aimed at

supporting the independence of visually
impaired individuals [18].

3. METHODS

This research 1is categorized as
Research and Development (R&D), focusing
on the design and implementation of an object
detection system as an assistive tool for
visually impaired individuals. The system
integrates several hardware and software
components to enable real-time detection and
audio feedback.

The hardware of the system was built
using a Raspberry Pi 4 as the central
processing unit. This device was chosen
because of its portability and sufficient
computational power to execute lightweight
deep learning models. Two camera modules
were employed as input devices, positioned at
the front and rear to create a dual camera
system. This configuration allows the device
to capture a wider field of view, thereby
increasing spatial awareness for the user. A
mini speaker was added to deliver real-time
audio feedback about detected objects, while
the power supply module was equipped with
voltage regulation to ensure the stable
performance of all hardware components. The
entire hardware configuration was designed
to be compact and wearable, making it
suitable for everyday use by visually
impaired individuals.

The software component was
implemented using the YOLOv10 object
detection algorithm, selected for its high
accuracy and  real-time  processing
capabilities. The system was programmed in
Python and executed on the Raspberry Pi
platform. YOLOv10 was trained to recognize
six object classes: person, car, motorcycle,
bicycle, table, and chair. These classes were
chosen because they represent common
obstacles in both indoor and outdoor
environments. To provide comparative
evaluation, the YOLOv4 algorithm was also
integrated as a benchmark model. Once the
objects were detected, the results were
processed and transmitted to the audio
output system, enabling users to receive
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direct spoken feedback about their
surroundings.

The overall system workflow begins
with image capture from the dual cameras.
The video frames obtained are processed by
the YOLOv10 detection model, which
identifies and classifies the objects present in
the scene. The detection results are then
processed by the Raspberry Pi to determine
the type and position of the objects.
Subsequently, the system translates this
information into audio output that is
delivered through the speaker. This process
enables visually impaired users to receive
real-time awareness of objects in their
environment, both in front and behind them,
thus improving navigation safety and
independence.

Data collection was conducted
through direct implementation of the system
in  both
environments. In controlled testing, objects
were placed at different distances and angles

controlled and  real-world

indoors to measure the accuracy and
detection delay of the system. In outdoor
testing, the system was used by visually
impaired respondents to evaluate
performance  under real navigation
conditions. During both scenarios, object
detection results, accuracy rates, false
detection cases, and delay times were
recorded for further analysis.

The data collected from system
testing was analyzed quantitatively.
Performance parameters such as detection
accuracy, false positive rate, false negative

rate, and processing delay were compared
between YOLOv10 and YOLOv4. This
comparison highlighted the improvements
achieved by YOLOVI10 in terms of accuracy
and robustness in complex environments.
Additionally, qualitative feedback from
visually impaired respondents was taken into
account to assess the practicality, usability,
and comfort of the system in supporting
independent navigation.

4. RESULTS AND DISCUSSION

4.1 YOLOv10 Object Detection Results

Based on Table 1, the YOLOv10
model was tested to evaluate its ability to
detect six object categories, namely person,
car, motorcycle, bicycle, chair, and table,
under bright lighting conditions at a distance
of 5 meters (both indoor and outdoor). The
detection performance was assessed using
confidence scores for each object class.

The recognition results showed that
the YOLOv10 model achieved the highest
accuracy in detecting the bicycle, with a
confidence score of 95%, indicating strong
reliability in identifying this class. The
motorcycle (94%), person (93%), and car (92%)
categories also demonstrated high accuracy
levels, proving the robustness of the model in
real-world scenarios. The chair category
achieved a moderate accuracy with 86%,
while the table recorded the lowest score at
57%, suggesting detection challenges for this
object class.

Table 1. YOLOv10 Object Detection Results

No Object Detection Result | Confidence Score (%)
1 Person Detected 93
2 Car Detected 92
3 | Motorcycle Detected 94
4 Bicycle Detected 95
5 Chair Detected 86
6 Table Detected 57

From the test results shown in Table

1, it is evident that YOLOv10 delivers varying
performance depending on the object
category. Objects with simpler shapes and
stronger contrast against the background,

such as bicycles and motorcycles, tend to
achieve higher confidence scores. On the
other hand, objects with complex structures or
lower contrast, such as tables, produce lower
detection accuracy.
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4.2 Results of Distance Change Testing

The distance change testing was
conducted both indoors and outdoors using
the front and rear cameras under bright
lighting conditions with distances ranging
from 1 to 10 meters. Based on the results,
several key findings can be highlighted:

4.2.1 Indoor Testing (Front Camera)

The front camera indoors showed
relatively stable performance at distances up
to 6 meters, with error values consistently
below 10%. Accuracy began to degrade at
longer ranges, particularly at 9-10 meters,
where errors increased up to 22% depending
on the object type.

4.2.2 Indoor Testing (Rear Camera)

Similar to the front camera, the rear
camera indoors maintained good accuracy at
short-to-medium ranges (1-6 meters) with
error rates between 2-10%. However, at
longer distances (7-10 meters), errors became
more significant, especially for objects with
complex shapes such as chairs, where errors
exceeded 30%.

4.2.3 Outdoor Testing (Front Camera)

The outdoor front camera produced
accurate readings at 1-5 meters with error
values below 10%. However, performance
dropped significantly beyond 6 meters, where
errors ranged from 15-50%, especially for
motorcycles and bicycles. Environmental
factors such as sunlight, shadows, and
background objects strongly influenced
accuracy.

4.2.4 Outdoor Testing (Rear Camera)

The outdoor rear camera exhibited the
highest variability. While performance was
still acceptable at close ranges (1-3 meters),
errors increased rapidly at longer distances,
reaching 20-35% for motorcycles and bicycles.
This indicates the rear camera is more
sensitive to environmental interference and
object positioning.

4.3 Test Results Effect of Light Intensity

The effect of light intensity was tested
at an effective distance of 5 meters under
various conditions both indoors (very bright,
bright, dim, dark, very dark) and outdoors

(morning, noon, afternoon, night) using the
front and rear cameras.
4.3.1 Indoor Testing (Front Camera)

The front camera indoors performed
well under very bright and bright conditions,
with errors ranging from 1.2-10%. However,
accuracy decreased significantly in dim and
dark lighting, where errors reached 36-68%.
In very dark conditions, detection failed
entirely, resulting in 100% error.

4.3.2 Indoor Testing (Rear Camera)

The rear camera showed similar
characteristics, =~ maintaining  acceptable
accuracy under very bright and bright
lighting with errors below 15%. Performance
dropped under dim and dark conditions, with
errors rising to 42-70%, and detection also
failed in very dark conditions (100% error).
4.3.3 Outdoor Testing (Front Camera)

The outdoor front camera achieved
excellent accuracy in daylight conditions
(morning, noon, afternoon), with errors
between 0-11%. However, during night
testing, accuracy dropped sharply across all
objects, producing errors up to 50-88%.

4.3.4 Outdoor Testing (Rear Camera)

The outdoor rear camera followed the
same trend, where accuracy remained stable
during daytime (errors between 2-11%) but
dropped drastically at night, with errors
exceeding 80%, especially for moving objects
such as motorcycles and bicycles.

4.4 Test Results of the Effect When Users
Take One Step

The effect of user movement was tested
by simulating a single walking step at the
effective distance of 5 meters, both indoors
and outdoors, using the front and rear
cameras. The goal was to observe how minor
user movement impacts object distance
detection.

4.4.1 Indoor Testing (Front Camera)

The front camera indoors showed small
deviations when the user moved one step.
Error values ranged between 4-13%, with the
chair having the lowest error (4%) and the
table the highest (13%). This indicates that the
system can still maintain acceptable accuracy
despite user movement.
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4.4.2 Indoor Testing (Rear Camera)

The rear camera indoors produced
slightly higher variations, with error rates
between 4-12%. The table was detected most
accurately (4% error), while the chair
produced the highest error (12%). These
results suggest that the rear camera is
somewhat less stable than the front camera in
compensating for user movement.

4.4.3 Outdoor Testing (Front Camera)

The outdoor front camera
demonstrated very high accuracy across all
objects, with error values consistently below
5%. The human object was detected perfectly
(0% error), while vehicles such as
motorcycles, cars, and bicycles showed
minimal deviations (2.8-4.2% error). This
highlights the robustness of the front camera
outdoors under normal lighting conditions.
4.4.4 Outdoor Testing (Rear Camera)

The outdoor rear camera also achieved
low error values, ranging from 1.4-6%.
Among the tested objects, motorcycles were
detected with the highest accuracy (1.4%
error), while bicycles produced the largest
deviation (6% error). Despite this, the overall
performance remained highly reliable.

4.5 Delay Parameter Test Results

The delay parameter testing was
conducted to evaluate the system’s response
time in detecting and announcing objects
through audio output. The tests involved
sequential detection of two different objects,
both indoors and outdoors, using the front
and rear cameras. The delay was measured as
the time difference between the object’s
appearance in the camera frame and the audio
response generated by the system.

4.5.1 Indoor Testing (Front Camera)

The front camera indoors showed
delays ranging from 3 to 6 seconds. The fastest
response occurred when detecting a chair-
table sequence (3-4 seconds), while the
slowest was during table—chair transitions (6
seconds). Overall, the system responded
consistently but exhibited minor variations
depending on the object pair being detected.
4.5.2 Indoor Testing (Rear Camera)

The rear camera indoors produced
slightly longer delays, varying between 3 and

7 seconds. The fastest detection occurred in
the table—chair sequence (3-5 seconds), while
the slowest was table—chair and person-table
transitions (7 seconds). This indicates that the
rear camera requires slightly more processing
time compared to the front camera in indoor
environments.

4.5.3 Outdoor Testing (Front Camera)

The outdoor front camera recorded
delays ranging from 3 to 9 seconds. The fastest
response occurred in the bicycle-person
sequence (3 seconds), while the longest delay
was observed in the car-motorcycle sequence
(9 seconds). Variability was higher outdoors
due to environmental factors such as lighting
and object movement.

4.5.4 Outdoor Testing (Rear Camera)

The rear camera outdoors produced
delays of 4 to 10 seconds, making it the
slowest among all conditions. The shortest
delay was in the bicycle—person sequence (4-
5 seconds), while the longest was in person—
car transitions (10 seconds). These findings
suggest that outdoor conditions significantly
affect system performance, particularly with
the rear camera.

4.6 Latency Test Results

Latency and frame rate testing were
carried out to evaluate the system’s
performance in terms of processing speed and
response time. The experiments were
conducted at an effective distance of 5 meters
under bright lighting conditions, using six
different objects (person, table, chair,
motorcycle, car, and bicycle) with both front
and rear cameras, indoors and outdoors.

The latency testing showed that the front
camera achieved better performance
compared to the rear camera. On the front
camera, the average latency ranged from 3900
ms for the chair to 5480 ms for the car. The
fastest response was recorded for the chair
(3900 ms / 130.0 ms per frame), while the car
exhibited the highest latency (5480 ms / 182.7
ms per frame). These results indicate that
simpler objects such as people and chairs
were detected faster, whereas larger or more
complex objects, including cars and
motorcycles, required longer detection times.
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On the other hand, the rear camera
showed higher latency values, ranging from
4500 ms for the chair to 6070 ms for the car.
Similar to the front camera, the chair was
detected the fastest (4500 ms / 150.0 ms per
frame), while the car had the slowest response
(6070 ms / 202.3 ms per frame). Overall, the
rear camera consistently exhibited longer
latency compared to the front camera,
suggesting higher processing overhead or
reduced efficiency in object recognition.

4.7 Model Evaluation Test Results

Model evaluation was conducted to
assess the performance of YOLOvV10 in waste
classification using key metrics such as
Precision, Recall, F1-Score, and Mean Average
Precision (mAP). The training process was
carried out with an image size of 640, 100
epochs, and a batch size of 16. Figure 4.9
presents the confusion matrix, which
illustrates the model’s ability to predict each
class during training and provides a clear

overview of classification accuracy for all
categories.

bicycle
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Figure 1. Confusion Matrix

The evaluation of the YOLOv10
model demonstrated varying performance
different object classes, as reflected in the

metrics of Accuracy, Precision, Recall, and F1-
Score.

Table 2. System Performance

Class | Accuracy| Precision| Recall | F1-Score
Table 91% 0.79 0.62 0.69
Chair | 90.5% 0.759 0.63 0.68
Person 80.5% 0.459 0.96 0.62
Car 97.6% 0.988 0.87 0.92
Motor 94.2% 0.911 0.72 0.80
Bicycle | 92.83% 0.952 0.60 0.73

For the bike class, the model achieved
good accuracy (92.83%) and very high
precision (0.952), showing most predicted
bikes were correct. However, recall was only
0.60, meaning 40% of actual bikes were
missed, indicating the model prioritizes
precision over sensitivity.

For the car class, performance was the
best overall, with 97.6% accuracy, 0.988
precision, and 0.87 recall (F1-Score 0.92). This

shows consistent and reliable detection with
minimal errors. The chair and table classes
showed moderate performance, with
accuracies around 90-91%, precision near
0.76-0.79, and recall around 0.62-0.63. The
relatively low recall indicates the model
struggles with detecting these objects, likely
due to visual complexity and similarity with
other furniture.
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For the motorcycle class, results were
strong, with 94.2% accuracy, 0.911 precision,
and 0.72 recall (F1-Score 0.80). The system
detects motorcycles well but still misses
nearly 30% of them. The person class had the
weakest balance. Recall was very high (0.96),
but precision was very low (0.459), leading to
frequent false positives and the lowest F1-
Score (0.62). This suggests difficulty
distinguishing people from other objects.

At the overall level, the model
reached precision and recall of 0.733 each,
with a Macro F1-Score of 0.74. It performs best
on structured objects (cars, motorcycles) but
struggles with variable or complex shapes
(people, chairs, tables).

4.8 Results of Device Testing on Users

Table 3. Average Performance Results on Respondents

Respondent | Avg Distance | Avg Accuracy | Avg Delay
Respondent 1 4.76 m 95.13% 3.62s
Respondent 2 4.66 m 93.15% 4.06s
Respondent 3 4.64 m 92.72% 3.34s
Respondent 4 4.64 m 87.14% 3.59s
Respondent 5 4.57 m 91.16% 3.81s
Average 4.65m 91.86% 3.68 s

Device testing with blind users
demonstrated strong overall performance,
achieving an average accuracy of 91.86%, a
detection distance of 4.65 meters, and a delay
of 3.68 seconds. In indoor trials, the front
camera showed excellent results in detecting
people, reaching up to 100% accuracy, while
the rear camera offered more balanced
performance, particularly for tables with an
accuracy of 87.4% compared to 83.64% on the
front camera. Outdoor testing also showed
high accuracy, with human detection
consistently above 97% and vehicles above
94%, although bicycle detection remained
weaker at around 85-90% with higher delays.
Between the two cameras, the rear camera
delivered more consistent results outdoors.
Across respondents, slight variations were
observed, with Respondent 1 achieving the
highest accuracy of 95.13%, Respondent 3
recording the fastest delay of 3.34 seconds,
and Respondent 4 showing the lowest
accuracy at 87.14%. User feedback highlighted
the system’s effectiveness, especially the
audio output that supported navigation, but
also pointed out issues with device weight
and volume levels indoors. Overall, the
system proved effective in
navigation, combining reliable detection with
acceptable delay, while further improvements

assisting

are needed in reducing device weight and

integrating adaptive audio features for
enhanced usability.

5. CONCLUSION

The development of an object
detection system based on YOLOv10 with
dual cameras as an assistive tool for the
visually  impaired was  successfully
implemented and tested. Distance testing
showed that 5 meters was the most effective
range, with a low error rate across conditions
(front camera indoor 2.4%, outdoor 5.3%; rear
camera indoor 3.4%, outdoor 4.9%). Light
intensity had a significant effect on
performance, where indoor accuracy was
highest under very bright conditions (1037
lux, error rate 897%), but degraded
drastically in dark environments, reaching
100% error at 0 Iux. Outdoor testing achieved
the best results in the morning (6695 lux, error
rate 3.95%), while at night (9 lux), error rates
increased up to 69.15%.

Latency analysis revealed delays
ranging from 4.3 to 6.8 seconds, with the front
camera performing faster (4703 ms) compared
to the rear camera (5258 ms). Object-wise, the
lowest latency was achieved for chairs (13.3%)
and people (12.6%). Frame rate measurements
showed the front camera achieved 156.7
ms/frame, while the rear camera reached 175.3
ms/frame.
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In terms of object recognition,
YOLOV10 achieved a true positive rate (TPR)
of 96% for people, indicating strong
performance in human detection. Vehicles
such as cars and motorcycles showed
balanced results with TPRs of 87% and 72%,
while bicycles performed weaker at 60%.
Chairs and tables also showed moderate
results at 63% and 62%. The model achieved a
Macro F1-Score of 0.74 (74%), with overall
precision and recall of 73.3%, indicating solid
overall performance. Accuracy analysis
showed the highest accuracy for cars (97.6%),

followed by motorcycles (94.2%), bicycles
(92.83%), chairs (90.5%), and people (80.5%).
Finally, user testing with five blind
respondents demonstrated strong real-world
performance, achieving an average accuracy
of 91.86%, an average detection distance of
4.65 meters, and an average delay of 3.68
seconds. These results confirm that the
YOLOv10-based dual camera system is
effective in assisting navigation for visually
impaired users, while further improvements
are recommended through dataset expansion
and the inclusion of additional obstacle types
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