Generative Engine Optimization in Marketing: A Bibliometric Review of Emerging SEO Strategies for Digital Brand Visibility

Authors

  • Loso Judijanto IPOSS Jakarta, Indonesia

DOI:

https://doi.org/10.58812/wsis.v3i11.2385

Keywords:

Bibliometric Analysis, Search Engine Optimization, Generative Engine Optimization, Digital Marketing, Content Marketing, Artificial Intelligence, VOSviewer

Abstract

This s​tudy per‌forms a bibliometr‍i​c a‌nalysis of research at the conve‌rgenc‍e of search engi‌n‌e optimization, digital marketing, and n​ovel Ge‌nerative Engine Opti⁠mization​ (‍GE​O) methodologie⁠s‍.  The analysis‌ utilizes papers in‌dexed in Scopu‍s and​ Web of Scien‌c‍e f‌rom 2‌01⁠0 to 2024, employing performance m‍etrics⁠ and science​-mapping‌ tools through‍ VOSvi‍ewe‍r and Biblio​metrix to identi⁠fy prominent aut‍hors, i​nstitutions, natio‍ns, and theme cl‌uster​s.​  Visual‍izations of networks⁠, overlays‌, and densiti⁠es in‍d‍ica‌te a stabl‍e core centered on se​arch engines, SEO, marke‍ting, and​ ele‌ctronic co⁠mmerc​e, w​ith an incre⁠asing focus on content marketin‍g, artificial i‍ntelligence, and strateg‍ic p‌la‌nning‍.  Colla‌boration maps underscore the piv​otal‌ roles of I‍ndia and the‌ U​nited Sta​tes, illustrating robu⁠st con⁠nectio‍ns​ between computer science and business-‌oriented departments.  The study elucidates the intellectual‍ framewo⁠rk o​f the discipline and situates G⁠E​O as an extension of SEO specifically designed for g⁠e⁠nerative AI conte⁠xts, thu‌s providing a basi​s‌ for future theoretical adva‍ncements and prac‌ti​cal models regarding digital brand visibili​ty i​n AI-driven search ecosystems.

References

[1] R. Buchmann et al., “Large language models: Expectations for semantics-driven systems engineering,” Data Knowl. Eng., vol. 152, p. 102324, 2024.

[2] L. Çalli and B. Alma Çalli, “Recoding Reality: A Case Study of YouTube Reactions to Generative AI Videos,” Systems, vol. 13, no. 10, p. 925, 2025.

[3] E. Bauer, S. Greiff, A. C. Graesser, K. Scheiter, and M. Sailer, “Looking beyond the hype: Understanding the effects of AI on learning,” Educ. Psychol. Rev., vol. 37, no. 2, p. 45, 2025.

[4] A. Iliadis and H. Ford, “Fast facts: Platforms from personalization to centralization,” Soc. Media+ Soc., vol. 9, no. 3, p. 20563051231195544, 2023.

[5] R. Bommasani, “On the opportunities and risks of foundation models,” arXiv Prepr. arXiv2108.07258, 2021.

[6] R. Guelailia and M. Bouziane, “Enhancing Search Engine Optimization through Artificial Intelligence,” Beam J. Econ. Stud., vol. 8, no. 2, pp. 489–500, 2024.

[7] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On the dangers of stochastic parrots: Can language models be too big?,” in Proceedings of the 2021 ACM conference on fairness, accountability, and transparency, 2021, pp. 610–623.

[8] S. U. Noble, “Algorithms of oppression: How search engines reinforce racism,” in Algorithms of oppression, New York university press, 2018.

[9] N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, and W. M. Lim, “How to conduct a bibliometric analysis: An overview and guidelines,” J. Bus. Res., vol. 133, pp. 285–296, 2021.

[10] M. Aria and C. Cuccurullo, “bibliometrix: An R-tool for comprehensive science mapping analysis,” J. Informetr., vol. 11, no. 4, pp. 959–975, 2017.

[11] P. Mongeon and A. Paul-Hus, “The journal coverage of Web of Science and Scopus: a comparative analysis,” Scientometrics, vol. 106, no. 1, pp. 213–228, 2016.

[12] M. J. Page et al., “The PRISMA 2020 statement: an updated guideline for reporting systematic reviews,” bmj, vol. 372, 2021.

[13] N. J. Van Eck and L. Waltman, “Citation-based clustering of publications using CitNetExplorer and VOSviewer,” Scientometrics, vol. 111, no. 2, pp. 1053–1070, 2017.

[14] R. Sen, “Optimal search engine marketing strategy,” Int. J. Electron. Commer., vol. 10, no. 1, pp. 9–25, 2005.

[15] B. Shih, C. Chen, and Z. Chen, “Retracted: an empirical study of an internet marketing strategy for search engine optimization,” Hum. factors Ergon. Manuf. Serv. Ind., vol. 23, no. 6, pp. 528–540, 2013.

[16] R. Berman and Z. Katona, “The role of search engine optimization in search marketing,” Mark. Sci., vol. 32, no. 4, pp. 644–651, 2013.

[17] C.-J. Luh, S.-A. Yang, and T.-L. D. Huang, “Estimating Google’s search engine ranking function from a search engine optimization perspective,” Online Inf. Rev., vol. 40, no. 2, pp. 239–255, 2016.

[18] E. M. Olson, K. M. Olson, A. J. Czaplewski, and T. M. Key, “Business strategy and the management of digital marketing,” Bus. Horiz., vol. 64, no. 2, pp. 285–293, 2021.

[19] R. R. Ahmed, D. Streimikiene, G. Berchtold, J. Vveinhardt, Z. A. Channar, and R. H. Soomro, “Effectiveness of online digital media advertising as a strategic tool for building brand sustainability: Evidence from FMCGs and services sectors of Pakistan,” Sustainability, vol. 11, no. 12, p. 3436, 2019.

[20] L. Sikos, Mastering structured data on the Semantic Web: From HTML5 microdata to linked open data. Apress, 2015.

[21] M. Reisenbichler, T. Reutterer, D. A. Schweidel, and D. Dan, “Frontiers: Supporting content marketing with natural language generation,” Mark. Sci., vol. 41, no. 3, pp. 441–452, 2022.

Downloads

Published

2025-11-28

How to Cite

Generative Engine Optimization in Marketing: A Bibliometric Review of Emerging SEO Strategies for Digital Brand Visibility (L. Judijanto , Trans.). (2025). West Science Interdisciplinary Studies, 3(11), 2046-2058. https://doi.org/10.58812/wsis.v3i11.2385