Wood Vinegar Applications: Quality, Efficacy, and Commercial Prospects for SMEs
DOI:
https://doi.org/10.58812/wsis.v3i11.2357Keywords:
Wood Vinegar, Pyrolysis, Termiticide, Coagulant, PesticideAbstract
Wood vinegar, scientifically defined as the condensation product of thermal decomposition (pyrolysis) of biomass rich in cellulose, hemicellulose, and lignin, presents a critical strategic step in efficient biomass waste management in Indonesia. Raw materials like coconut shells and palm oil waste are abundant, making their market potential highly promising. However, Indonesian Small and Medium Enterprises (SMEs) predominantly produce Grade 3 wood vinegar, which contains high levels of carcinogenic tar, hindering access to premium food-grade and pharmaceutical markets. This review aims to present a comprehensive report on the scientific characteristics and quality classification of wood vinegar, specifically analyzing the mechanism of action, effectiveness, and potential use of Grade 3 as an anti-termite agent (termiticide) and wood preservative, alongside its other advanced applications, such as food preservation, agricultural biopesticide, and latex coagulant. The method employed is a literature review, synthesizing data on chemical composition, purification standards (SNI and BPOM), and experimental findings on its multi-functional properties. The main conclusion is that Grade 3 wood vinegar proves highly effective as a termiticide, providing total wood protection and offering a safe, sustainable alternative to chemical wood preservatives. For food applications, rigorous purification to Grade 1 is essential to replace harmful practices like using formalin or borax. The novelty of this study lies in its integrated analysis of the technical efficacy (Grade 3 in termiticide) and the regulatory/commercial trade-off with food safety requirements (Grade 1), culminating in strategic recommendations for developing downstream purification technology for Indonesian SMEs
References
[1] C. Wang, S. Zhang, S. Huang, Z. Cao, J. Xu, and J. Lyu, “Effect of hydrothermal treatment on biomass structure with evaluation of post-pyrolysis process for wood vinegar preparation,” Fuel, vol. 305, p. 121513, Dec. 2021, doi: 10.1016/j.fuel.2021.121513.
[2] J. Xu et al., “Upgrading the wood vinegar prepared from the pyrolysis of biomass wastes by hydrothermal pretreatment,” Energy, vol. 244, p. 122631, Apr. 2022, doi: 10.1016/j.energy.2021.122631.
[3] J. L. Aguirre et al., “Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis,” Energies, vol. 13, no. 10, p. 2418, May 2020, doi: 10.3390/en13102418.
[4] H. A. A. Ouattara, F. B. Niamké, J. C. Yao, N. Amusant, and B. Garnier, “Wood Vinegars: Production Processes, Properties, and Valorization,” For. Prod. J., vol. 73, no. 3, pp. 239–249, May 2023, doi: 10.13073/FPJ-D-23-00021.
[5] A. S. Pimenta et al., “Wood Vinegar from Slow Pyrolysis of Eucalyptus Wood: Assessment of Removing Contaminants by Sequential Vacuum Distillation,” Forests, vol. 14, no. 12, p. 2414, Dec. 2023, doi: 10.3390/f14122414.
[6] C. Wang et al., “Study on an alternative approach for the preparation of wood vinegar from the hydrothermolysis process of cotton stalk,” Bioresour. Technol., vol. 254, pp. 231–238, Apr. 2018, doi: 10.1016/j.biortech.2018.01.088.
[7] S. Liao, W. Sun, H. Zheng, and Q. Xu, “Source Tracing of Raw Material Components in Wood Vinegar Distillation Process Based on Machine Learning and Aspen Simulation,” ChemEngineering, vol. 9, no. 2, p. 32, Mar. 2025, doi: 10.3390/chemengineering9020032.
[8] X. Liu, J. Wang, X. Feng, and J. Yu, “Wood vinegar resulting from the pyrolysis of apple tree branches for annual bluegrass control,” Ind. Crops Prod., vol. 174, p. 114193, Dec. 2021, doi: 10.1016/j.indcrop.2021.114193.
[9] S. Wibowo, W. Syafii, G. Pari, E. . Herliyana, N. . Saputra, and L. Efiyanti, “The effect of pyrolysis temperature stratification on the chemical compound of wood vinegar production from hardwood, softwood, and bamboo,” RASAYAN J. Chem., no. Special Issue, pp. 189–197, 2022, doi: 10.31788/RJC.2023.1558146.
[10] G. S. P. Gama et al., “Antimicrobial Impact of Wood Vinegar Produced Through Co-Pyrolysis of Eucalyptus Wood and Aromatic Herbs,” Antibiotics, vol. 13, no. 11, p. 1056, Nov. 2024, doi: 10.3390/antibiotics13111056.
[11] M. M. Morales, W. W. Sartori, B. R. Silva, S. T. Spera, A. B. D. Mendes, and E. Papa Ambrosio-Albuquerque, “WOOD VINEGAR: CHEMICAL CHARACTERISTICS, PHYTOTOXIC EFFECTS, AND IMPACTS ON GREENHOUSE GAS EMISSIONS,” Nativa, vol. 10, no. 3, pp. 400–409, Sep. 2022, doi: 10.31413/nativa.v10i3.14123.
[12] Z. Zhang, S. Ning, Q. Li, M. Sun, J. Lin, and X. Wang, “Levels and risk assessment of polycyclic aromatic hydrocarbons in wood vinegars from pyrolysis of biomass,” Chemosphere, vol. 278, p. 130453, Sep. 2021, doi: 10.1016/j.chemosphere.2021.130453.
[13] M. Dong et al., “Challenges in safe environmental applications of biochar: identifying risks and unintended consequence,” Biochar, vol. 7, no. 1, p. 12, Jan. 2025, doi: 10.1007/s42773-024-00412-4.
[14] P. Ahmadi, M. javad Avesta, S. Khorramdel, M. Jonoobi, and T. H. Mekonnen, “Production and use of lignocellulosic wood vinegar and tar as organic pesticides to fight bacterial canker disease,” Int. J. Biol. Macromol., vol. 301, p. 140373, Apr. 2025, doi: 10.1016/j.ijbiomac.2025.140373.
[15] H. Zhou, N. Zhang, L. Mu, L. Gao, L. Bao, and C. Tang, “New enlightenment on the regulatory effects of acids and phenolic compounds in wood vinegar, a by-product of biomass pyrolysis, on tomato production,” Front. Microbiol., vol. 16, Jul. 2025, doi: 10.3389/fmicb.2025.1538998.
[16] A. M. Randan, irvin Dayadi, and K. Y. Widiati, “Yield and Quality of Liquid Smoke From Sawdust Waste of Sengon (Paraserianthes Falcataria L. Nielsen), Red Meranti (Shorea SPP.) and Camphor (Dryobalanops SP.),” Int. J. Integr. Sci., vol. 4, no. 9, pp. 1997–2010, Sep. 2025, doi: 10.55927/ijis.v4i9.561.
[17] E. Hertianti, A. Rahman, and M. F. Hernandi, “Physicochemical Properties and Antibacterial Activity of Liquid Smoke from Leaves and Log Waste of Eucalyptus Tree in East Kalimantan, Indonesia,” Asian J. Res. Agric. For., vol. 11, no. 2, pp. 104–113, Apr. 2025, doi: 10.9734/ajraf/2025/v11i2390.
[18] J.-F. Yang, C.-H. Yang, M.-T. Liang, Z.-J. Gao, Y.-W. Wu, and L.-Y. Chuang, “Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis,” Molecules, vol. 21, no. 9, p. 1150, Aug. 2016, doi: 10.3390/molecules21091150.
[19] G. Iacomino et al., “Exploring the Potential of Wood Vinegar: Chemical Composition and Biological Effects on Crops and Pests,” Agronomy, vol. 14, no. 1, p. 114, Jan. 2024, doi: 10.3390/agronomy14010114.
[20] L. Fagernäs, E. Kuoppala, K. Tiilikkala, and A. Oasmaa, “Chemical Composition of Birch Wood Slow Pyrolysis Products,” Energy & Fuels, vol. 26, no. 2, pp. 1275–1283, Feb. 2012, doi: 10.1021/ef2018836.
[21] A. H. Prianto, Budiawan, Y. Yulizar, and P. Simanjuntak, “Chemical characterization of wood vinegar from acacia barks,” IOP Conf. Ser. Earth Environ. Sci., vol. 591, no. 1, p. 012012, Nov. 2020, doi: 10.1088/1755-1315/591/1/012012.
[22] I. Mulyawanti, S. I. Kailaku, A. N. A. Syah, and Risfaheri, “Chemical Identification of Coconut Shell Liquid Smoke,” IOP Conf. Ser. Earth Environ. Sci., vol. 309, no. 1, p. 012020, Sep. 2019, doi: 10.1088/1755-1315/309/1/012020.
[23] Q. Wu et al., “Study on the preparation of wood vinegar from biomass residues by carbonization process,” Bioresour. Technol., vol. 179, pp. 98–103, Mar. 2015, doi: 10.1016/j.biortech.2014.12.026.
[24] C. Cortesia et al., “Acetic Acid, the Active Component of Vinegar, Is an Effective Tuberculocidal Disinfectant,” MBio, vol. 5, no. 2, May 2014, doi: 10.1128/mBio.00013-14.
[25] J. Wang, I. Potoroko, and L. Tsirulnichenko, “Wood vinegar and chitosan compound preservative affects on fish balls stability,” Food Biosci., vol. 42, p. 101102, Aug. 2021, doi: 10.1016/j.fbio.2021.101102.
[26] J. M. Lingbeck, P. Cordero, C. A. O’Bryan, M. G. Johnson, S. C. Ricke, and P. G. Crandall, “Functionality of liquid smoke as an all-natural antimicrobial in food preservation,” Meat Sci., vol. 97, no. 2, pp. 197–206, Jun. 2014, doi: 10.1016/j.meatsci.2014.02.003.
[27] X. Xin, K. Dell, I. A. Udugama, B. R. Young, and S. Baroutian, “Transforming biomass pyrolysis technologies to produce liquid smoke food flavouring,” J. Clean. Prod., vol. 294, p. 125368, Apr. 2021, doi: 10.1016/j.jclepro.2020.125368.
[28] Z. Gonulalan, A. Kose, and H. Yetim, “Effects of liquid smoke on quality characteristics of Turkish standard smoked beef tongue,” Meat Sci., vol. 66, no. 1, pp. 165–170, Jan. 2004, doi: 10.1016/S0309-1740(03)00080-9.
[29] P. Šimko, “Factors affecting elimination of polycyclic aromatic hydrocarbons from smoked meat foods and liquid smoke flavorings,” Mol. Nutr. Food Res., vol. 49, no. 7, pp. 637–647, Jul. 2005, doi: 10.1002/mnfr.200400091.
[30] Keryanti, A. R. Permanasari, F. Yulistiani, R. P. Sihombing, and W. Wibisono, “Applications of Liquid Smoke from Biomass on Food Products: A Review,” in Proceedings of the International Seminar of Science and Applied Technology (ISSAT 2020), Paris, France: Atlantis Press, 2020. doi: 10.2991/aer.k.201221.086.
[31] H. A. Oramahi, R. D. Permana, F. Diba, and Y. Indrayani, “The Composition and Termicidal Activity of Vinegar from Medang Wood (Cinnamomum sp.) under Different Pyrolysis Temperature,” Floresta e Ambient., vol. 30, no. 3, 2023, doi: 10.1590/2179-8087-FLORAM-2023-0016.
[32] W. O. M. Arsyad, E. Basri, D. Hendra, and D. R. Trisatya, “Termite resistance of impregnated Jabon wood (Anthocephalus Cadamba Miq.) with combined impregnant agents,” J. Korean Wood Sci. Technol., vol. 47, no. 4, pp. 451–458, 2019, doi: 10.5658/WOOD.2019.47.4.451.
[33] Evahelda, R. F. Astuti, S. N. Aini, and Nurhadini, “Liquid smoke application in latex as an environment-friendly natural coagulant,” IOP Conf. Ser. Earth Environ. Sci., vol. 926, no. 1, p. 012052, Nov. 2021, doi: 10.1088/1755-1315/926/1/012052.
[34] D. A. Triawan et al., “Preparation and Characterization of Liquid Smoke from Wood Sawdust Azadirachta excelsa (Jack) M. Jacobs and its Application as a Natural Rubber Coagulant,” IOP Conf. Ser. Earth Environ. Sci., vol. 1108, no. 1, p. 012052, Nov. 2022, doi: 10.1088/1755-1315/1108/1/012052.
[35] F. C. Dewi, S. Tuhuteru, A. Aladin, and D. S. Yani, “Characteristics of Liquid Smoke of Red Fruit (Pandanus conoideus. L.) Waste with Pyrolysis Method and Potentially as Biopesticide,” J. Environ. Agric. Stud., vol. 2, no. 2, pp. 81–86, Nov. 2021, doi: 10.32996/jeas.2021.2.2.7.
[36] Hernani and S. Yuliani, “Changes in physical properties of natural pesticides formulated from liquid smoke during storage,” E3S Web Conf., vol. 444, p. 04022, Nov. 2023, doi: 10.1051/e3sconf/202344404022.
[37] P. Kharel, A. Sapkota, P. Regmi, B. Subba, and K. R. Sharma, “Qualitative Analysis of Adulterant Mixed in Different Food Stuffs,” J. Nepal Biotechnol. Assoc., vol. 5, no. 1, pp. 72–74, Mar. 2024, doi: 10.3126/jnba.v5i1.63750.
[38] X. Xin, W. Zhao, S. Essien, K. Dell, and S. Baroutian, “The effects of ageing treatment on bioactive contents and chemical composition of liquid smoke food flavourings,” Eur. Food Res. Technol., vol. 248, no. 5, pp. 1311–1319, May 2022, doi: 10.1007/s00217-022-03976-2.
[39] M. W. Nurhadi, A. Arinana, A. I. Rahmawati, E. N. Herliyana, R. Andika, and S. K. Himmi, “Wood decomposers on six community timber species in two different locations,” Biodiversitas, vol. 24, no. 12, pp. 6629–6640, 2023, doi: 10.13057/biodiv/d241225.
[40] A. Arinana, F. Ardiansyah, R. Andika, D. Tarmadi, and Satimo, “Identification of subterranean termites and their attack characteristics on settlements in Jakarta Province, Indonesia,” Biodiversitas, vol. 26, no. 1, pp. 22–35, 2025, doi: 10.13057/biodiv/d260103.
[41] R. Andika, F. Diba, and L. Sisillia, “Pengaruh pengasapan terhadap keawetan kayu bintangur (Chalophyllum sp.) dan kayu medang (Chinnamomum sp) dari serangan rayap tanah Coptotermes curvignathus Holmgren,” Tengkawang, vol. 9, no. 1, pp. 28–41, 2019.
[42] R. Andika, A. Arinana, R. K. Sari, A. I. Rahamawati, and S. K. Himmi, “Antitermite Activity of Eucalyptus pellita Bark Extract,” J. Sylva Lestari, vol. 13, no. 1, pp. 32–44, Jan. 2025, doi: 10.23960/jsl.v13i1.1023.
[43] M. Adfa et al., “Anti-Termite Activity of Azadirachta excelsa Seed Kernel and Its Isolated Compound against Coptotermes curvignathus,” J. Korean Wood Sci. Technol., vol. 51, no. 3, 2023, doi: 10.5658/WOOD.2023.51.3.157.
[44] M. Akkuş, Ç. Akçay, and M. Yalçın, “Antifungal and larvicidal effects of wood vinegar on wood-destroying fungi and insects,” Maderas. Cienc. y Tecnol., vol. 24, Jul. 2022, doi: 10.4067/S0718-221X2022000100437.
[45] H. A. Oramahi, T. Yoshimura, F. Diba, D. Setyawati, and Nurhaida, “Antifungal and antitermitic activities of wood vinegar from oil palm trunk,” J. Wood Sci., vol. 64, no. 3, pp. 311–317, Jun. 2018, doi: 10.1007/s10086-018-1703-2.
[46] M. ADFA et al., “Chemical Components, Antitermite and Antifungal Activities of Cinnamomum parthenoxylon Wood Vinegar,” J. Korean Wood Sci. Technol., vol. 48, no. 1, pp. 107–116, Jan. 2020, doi: 10.5658/WOOD.2020.48.1.107.
[47] M. Ismayati, A. Nakagawa-Izumi, N. N. Kamaluddin, and H. Ohi, “Toxicity and feeding deterrent effect of 2-methylanthraquinone from thewood extractives of Tectona grandis on the subterranean termites Coptotermes formosanus and Reticulitermes speratus,” Insects, vol. 7, no. 4, 2016, doi: 10.3390/insects7040063.
[48] A. Suprianto, H. A. Oramahi, F. Diba, G. Hardiansyah, and M. S. Anwari, “The Antitermitic and Antifungal Activities and Composition of Vinegar from Durian Wood (Durio sp.),” J. Korean Wood Sci. Technol., vol. 51, no. 4, 2023, doi: 10.5658/WOOD.2023.51.4.283.
[49] G. Elango et al., “Efficacy of medicinal plant extracts against Formosan subterranean termite, Coptotermes formosanus,” Ind. Crops Prod., vol. 36, no. 1, pp. 524–530, 2012, doi: 10.1016/j.indcrop.2011.10.032.
[50] S. Rohani, Y. Rosita, V. Pramayastri, and L. Hafidzah, “Borax analysis with spectrophotometry on meat bakso of frozen food that sold in modern markets and traditional markets in Palembang,” Int. J. Ecophysiol., vol. 5, no. 1, pp. 19–35, Feb. 2023, doi: 10.32734/ijoep.v5i1.12342.
[51] F. Nowshad, M. N. Islam, and M. S. Khan, “Concentration and formation behavior of naturally occurring formaldehyde in foods,” Agric. Food Secur., vol. 7, no. 1, p. 17, Dec. 2018, doi: 10.1186/s40066-018-0166-4.
[52] X. Xin, K. Ghoreishi, S. Mehta, C. Samarakoon, and S. Baroutian, “Sensory evaluation of beef sirloin steak treated with fast pyrolysis liquid smoke,” Eur. Food Res. Technol., vol. 250, no. 8, pp. 2211–2224, Aug. 2024, doi: 10.1007/s00217-024-04531-x.
[53] N. F. Zebua, S. Nadia, and E. Elviana, “Literatur Review: Beberapa Formulasi Dari Asap Cair,” JIFI (Jurnal Ilm. Farm. Imelda), vol. 7, no. 2, pp. 71–77, 2024, doi: 10.52943/jifarmasi.v7i2.1253.
[54] A. Racioppo et al., “Optimizing liquid smoke conditions for the production and preservation of innovative fish products,” Food Biosci., vol. 53, p. 102712, Jun. 2023, doi: 10.1016/j.fbio.2023.102712.
[55] Supriadi, “Optimasi Pemanfaatan Beragam Jenis Pestisida Untuk Mengendalikan Hama Dan Penyakit Tanaman,” J. Litbang Pertan., vol. 32, no. 1, pp. 1–9, 2013.
[56] A. Meilin, N. Nasamsir, and J. F. Handana, “Potensi Biopestisida Asap Cair Asal Tempurung Kelapa Terhadap Serangga Araecerus fasciculatus (De Geer),” J. Media Pertan., vol. 8, no. 2, p. 146, 2023, doi: 10.33087/jagro.v8i2.212.
[57] N. Vintiani, M. Naswir, and H. Suryadri, “Aplikasi Asap Cair Batubara Sebagai Koagulan Lateks Serta Pengaruhnya Terhadap Struktur dan Kualitas Lateks,” J. Eng., vol. 3, no. 1, pp. 35–43, 2021, doi: 10.22437/jurnalengineering.v3i1.12151.
[58] D. N. Erlytasari, G. Wibisono, and R. Hapsari, “Efektivitas Asap Cair Berbagai Konsentrasi Sebagai Disinfektan Alat Klinik Gigi,” J. Kedokt. Diponegoro, vol. 8, no. 4, pp. 1114–1123, 2019, [Online]. Available: http://ejournal3.undip.ac.id/index.php/medico
[59] R. Nabillah et al., “Exploring the dynamics of supply chain sustainability and resilience in the coconut agriculture: the case of Indragiri Hilir in Indonesia,” Environ. Dev. Sustain., Sep. 2025, doi: 10.1007/s10668-025-06756-6.
[60] B. Piluharto, D. Indarti, A. Asnawati, and P. Pandunata, “PEMBERDAYAAN EKONOMI UNIT USAHA PRODUKSI ASAP CAIR DI DESA PATEMON, KECAMATAN TANGGUL, KABUPATEN JEMBER,” J-Dinamika J. Pengabdi. Masy., vol. 6, no. 2, pp. 232–236, Dec. 2021, doi: 10.25047/j-dinamika.v6i2.2535.
[61] A. M. Ichwan, R. Riskiyani, A. Zailan, and ..., “Analisis Faktor yang Mempengaruhi Pengembangan UMKM Ikan Pindang di Kecamatan Herlang Kabupaten Bulukumba Sulawesi Selatan,” Agric. Socio …, vol. 2, no. 1, pp. 18–27, 2025, [Online]. Available: https://agrisosco.com/index.php/ASEJ/article/view/100%0Ahttps://agrisosco.com/index.php/ASEJ/article/download/100/67
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Riki Andika, I Putu Gede Didik Widiarta, Ainun Zalsabila, Arinana Arinana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.








