Analysis of The Suitability of Frequency Distribution of Rainfall Data and Rainfall Return Period at PT. X, Kutai Kartanegara Regency, East Kalimantan
DOI:
https://doi.org/10.58812/wsis.v3i05.2038Keywords:
Annual Maximum Rainfall, Probability Distribution, Return Period, Chi-Square Test, Kolmogorov-Smirnov Test, Gumbel DistributionAbstract
Annual maximum rainfall is a critical parameter in mine planning, particularly for the design of drainage systems and hydrometeorological disaster mitigation. This study aims to analyze the frequency distribution of rainfall and estimate design rainfall for various return periods in the operational area of PT X, located in Kutai Kartanegara Regency, East Kalimantan. The dataset comprises 11 years of annual maximum rainfall data from 2013 to 2023. Four probability distribution models were evaluated: Gumbel, Normal, Log-Normal, and Log Pearson Type III. Goodness-of-fit testing was conducted using the Chi-Square and Kolmogorov-Smirnov methods. The Chi-Square test results indicate that all distributions are acceptable at a 5% significance level, but only the Gumbel distribution is valid at a 1% level. The Kolmogorov-Smirnov test confirms that all distributions are statistically acceptable at both significance levels. Design rainfall values were calculated for return periods of 2, 5, 10, 25, 50, and 100 years. The highest rainfall for the 2-year return period was produced by the Normal distribution (307.24 mm), while the Gumbel distribution yielded the highest values for return periods from 5 to 100 years, reaching a peak of 493.86 mm for the 100-year return period. These results suggest that the Gumbel distribution is the most suitable model for representing extreme rainfall events in the study area and is recommended for application in mine drainage system design and surface runoff control planning.
References
[1] F. J. Acero, S. Parey, J. A. García, and D. Dacunha-Castelle, “Return level estimation of extreme rainfall over the Iberian Peninsula: Comparison of methods,” Water (Switzerland), vol. 10, no. 2, 2018, doi: 10.3390/w10020179.
[2] J. GhoshDastider, D. Pal, and P. K. Mishra, “Evidence of Kolmogorov like scalings and multifractality in the rainfall events,” pp. 1–20, 2024, [Online]. Available: http://arxiv.org/abs/2405.03463
[3] A. Akcil and S. Koldas, “Acid Mine Drainage (AMD): causes, treatment and case studies,” J. Clean. Prod., vol. 14, no. 12, pp. 1139–1145, 2006, doi: https://doi.org/10.1016/j.jclepro.2004.09.006.
[4] P. L. Younger, S. A. Banwart, and R. S. Hedin, “Mine Water Hydrology BT - Mine Water: Hydrology, Pollution, Remediation,” P. L. Younger, S. A. Banwart, and R. S. Hedin, Eds. Dordrecht: Springer Netherlands, 2002, pp. 127–270. doi: 10.1007/978-94-010-0610-1_3.
[5] T. Kempka et al., “Best-practice guidelines on Hybrid Pumped Hydropower Storage of excess energy in open-pit lignite mines,” 2024.
[6] C. Asdak, Yulizar, and Subiyanto, “a National Policy on Indonesia’S Integrated Water Resource Conservation Management,” Indones. J. For. Res., vol. 10, no. 2, pp. 151–162, 2023, doi: 10.59465/ijfr.2023.10.2.151-162.
[7] R. Montes-Pajuelo, Á. M. Rodríguez-Pérez, R. López, and C. A. Rodríguez, “Analysis of Probability Distributions for Modelling Extreme Rainfall Events and Detecting Climate Change: Insights from Mathematical and Statistical Methods,” Mathematics, vol. 12, no. 7, pp. 1–24, 2024, doi: 10.3390/math12071093.
[8] A. C. de S. Matos, F. E. O. E. Silva, and G. de O. Corrêa, “Estimating the parameters of a monthly hydrological model using hydrological signatures,” Rev. Bras. Recur. Hidricos, vol. 29, pp. 1–11, 2024, doi: 10.1590/2318-0331.292420230121.
[9] A. Al Mamoon and A. Rahman, “Selection of the best fit probability distribution in rainfall frequency analysis for Qatar,” Nat. Hazards, vol. 86, no. 1, pp. 281–296, 2017, doi: 10.1007/s11069-016-2687-0.
[10] M. Basinger, F. Montalto, and U. Lall, “A rainwater harvesting system reliability model based on nonparametric stochastic rainfall generator,” J. Hydrol., vol. 392, no. 3–4, pp. 105–118, Oct. 2010, doi: 10.1016/J.JHYDROL.2010.07.039.
[11] C. M. Côte, C. J. Moran, C. J. Hedemann, and C. Koch, “Systems modelling for effective mine water management,” Environ. Model. Softw., vol. 25, no. 12, pp. 1664–1671, Dec. 2010, doi: 10.1016/J.ENVSOFT.2010.06.012.
[12] M. T. Aditya, H. Susilo, and Y. Fanani, “Analysis of Decreased Limestone Production on the Effect of Rainfall with the Linear Regression Method,” vol. 01, no. 10, pp. 1092–1101, 2023.
[13] T. A. Cahyadi, S. Magdalena, D. Haryanto, W. D. Ratminah, P. E. Rosadi, and P. E. Asmara, “Planning of mining water management costs,” AIP Conf. Proc., vol. 2245, no. 1, p. 90008, Jul. 2020, doi: 10.1063/5.0007076.
[14] A. Gires, I. Tchiguirinskaia, D. Schertzer, A. Schellart, A. Berne, and S. Lovejoy, “Influence of small scale rainfall variability on standard comparison tools between radar and rain gauge data,” Atmos. Res., vol. 138, pp. 125–138, Mar. 2014, doi: 10.1016/J.ATMOSRES.2013.11.008.
[15] A. L. A. Martins, G. R. Liska, L. A. Beijo, F. S. de Menezes, and M. Â. Cirillo, “Generalized Pareto distribution applied to the analysis of maximum rainfall events in Uruguaiana, RS, Brazil,” SN Appl. Sci., vol. 2, no. 9, p. 1479, 2020, doi: 10.1007/s42452-020-03199-8.
[16] A. Kumar and M. Saharia, “Exploratory Analysis of Hydrological Data BT - Python for Water and Environment,” A. Kumar and M. Saharia, Eds. Singapore: Springer Nature Singapore, 2024, pp. 23–41. doi: 10.1007/978-981-99-9408-3_4.
[17] R. Diwakar, “An evaluation of normal versus lognormal distribution in data description and empirical analysis,” Pract. Assessment, Res. Eval., vol. 22, no. 13, pp. 1–15, 2017.
[18] C. G. Anghel, “Revisiting the Use of the Gumbel Distribution: A Comprehensive Statistical Analysis Regarding Modeling Extremes and Rare Events,” Mathematics, vol. 12, no. 16, 2024, doi: 10.3390/math12162466.
[19] C.-G. Anghel and D. Ianculescu, “An In-Depth Statistical Analysis of the Pearson Type III Distribution Behavior in Modeling Extreme and Rare Events,” Water, vol. 17, no. 10, 2025, doi: 10.3390/w17101539.
[20] B. Oseni and F. Ayoola, “Fitting the Statistical Distribution for Daily Rainfall in Ibadan, Based on Chi-Square and Kolmogorov-Smirnov Goodness-of-Fit,” Eur. J. Bus. …, vol. 4, no. 17, pp. 62–70, 2012, [Online]. Available: http://www.iiste.org/Journals/index.php/EJBM/article/view/3202
[21] F. Soehardi and M. Dinata, “Recent analysis of maximum rain period,” Int. J. Eng. Technol., vol. 7, no. September, pp. 63–67, 2018, doi: 10.14419/ijet.v7i2.3.12323.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Tri Aditya, Helik Susilo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.








