Geospatial Mapping and Predictive Analysis for Drug Trafficking Intervention in Eastern Indonesia

Authors

  • Ismail Ismail Universitas Bhayangkara Surabaya
  • Felecia Felecia Universitas Kristen Petra
  • Anisa Kurniatul Azizah Universitas Bhayangkara Surabaya
  • Diana Rahmawati Universitas Bhayangkara Surabaya

DOI:

https://doi.org/10.58812/wsis.v3i04.1817

Keywords:

Geospatial Mapping, Predictive Analysis, Drug Trafficking, Eastern Indonesia

Abstract

This study explores the application of geospatial mapping and predictive analysis in efforts to combat drug trafficking in Eastern Indonesia—a region characterized by complex geography and limited surveillance infrastructure. Using a qualitative approach, data were collected through in-depth interviews with three key informants: a regional police officer, a representative of the National Narcotics Agency (BNN), and a local community leader. The results reveal four central themes: the current state of drug trafficking in the region, the potential and underutilization of geospatial tools, the lack of predictive analytics at the regional level, and significant challenges such as limited infrastructure, lack of trained personnel, and poor inter-agency coordination. While the use of geospatial and predictive technologies remains nascent, stakeholders express optimism about their potential. The study highlights the need for context-specific strategies, local capacity-building, and multi-stakeholder collaboration to enhance data-driven interventions in narcotics control.

References

[1] A. Z. N. Ryan and R. A. Prastyanti, “International Law Enforcement Against Transnational Narcotics Smuggling In Indonesian Sea Lanes,” Int. J. Soc. Res., vol. 2, no. 6, pp. 238–246, 2024.

[2] V. M. Harum and N. Syarifah, “Upaya Pemerintah Indonesia dalam Menangani Kejahatan Narkotika Sebagai Kejahatan Transnasional,” Wajah Huk., vol. 7, no. 2, pp. 331–339, 2023.

[3] E. Suhartini, M. Roestamy, and A. Yumarni, “PREVENTION AND ERADICATION OF DRUG TRAFFICKING IN INDONESIA,” UNTAG Law Rev., vol. 2, p. 100, Nov. 2018, doi: 10.36356/ulrev.v2i2.918.

[4] R. Pannyiwi, A. A. Andi Agustang, T. Kasnawi, A. Yani, and S. Syam, “Social network for drug circulation in sidenreng rappang regency, Indonesia,” Syst. Rev. Pharm., vol. 11, no. 9, pp. 575–577, 2020.

[5] R. Galuhnagara, “Implementasi Konvensi Tunggal PBB tentang Narkotika 1961 di Indonesia dan Beberapa Negara,” in Bandung Conference Series: Law Studies, 2024, pp. 1082–1089.

[6] S. Niamkaeo and O. Robert, “Spatial Relationship of Drug Smuggling in Northern Thailand Using GIS-based Knowledge Discovery.,” Environ. Nat. Resour. J., vol. 18, no. 3, 2020.

[7] J. W. Curtis and A. Curtis, “Using GIS for substance abuse research and intervention,” Res. Methods Study Subst. Abus., pp. 161–178, 2017.

[8] A. Malik, R. Maciejewski, S. Towers, S. McCullough, and D. S. Ebert, “Proactive spatiotemporal resource allocation and predictive visual analytics for community policing and law enforcement,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 1863–1872, 2014.

[9] A. Putra and L. Salsabila, “Jalur Merah Peredaran Narkoba di Kota Batam dan Strategi Penanggulangannya,” Dialekt. Publik J. Adm. Negara Univ. Puter. Batam, vol. 6, pp. 23–27, Apr. 2022, doi: 10.33884/dialektikapublik.v6i1.5484.

[10] S. V. Muhamad, “Kejahatan Transnasional Penyelundupan Narkoba dari Malaysia ke Indonesia: Kasus di Provinsi Kepulauan Riau dan Kalimantan Barat,” J. Polit. Din. Masal. Polit. Dalam Negeri dan Hub. Int., vol. 6, no. 1, 2016.

[11] N. Ramadhani and N. Farabi, “Upaya Pemerintah Indonesia dalam Menurunkan Angka Peredaran Narkotika di Indonesia yang Dilakukan oleh Pengedar Asing Tahun 2014-2016,” J. Int. Relations Diponegoro, vol. 5, no. 1, pp. 1074–1081, 2018.

[12] S. Chainey and J. Ratcliffe, “Identifying Crime Hotspots,” 2013, pp. 145–182. doi: 10.1002/9781118685181.ch6.

[13] Y. Zhang, L. Hoover, and J. S. Zhao, “Geographic Information System Effects on Policing Efficacy: An Evaluation of Empirical Assessments,” Int. J. Appl. Geospatial Res., vol. 5, no. 2, pp. 30–43, 2014.

[14] M. Ahmadi, Crime mapping and spatial analysis. Citeseer, 2003.

[15] S. Brayne, A. Rosenblat, and D. Boyd, “Predictive policing,” Data Civ. Rights A New Era Polic. Justice, pp. 1027–2015, 2015.

[16] N. Augustin Sam and A. M. A. Bamini, “Criminal Activity Forecasting using Machine Learning,” 10th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2024, vol. 9, no. 5, pp. 2151–2156, 2024, doi: 10.1109/ICACCS60874.2024.10717111.

[17] Y. Yashwanth, K. Mahitha, B. Shah, S. Shaik, and N. C. Sriman Narayana Iyengar, “Crime Rate Prediction Using Machine Learning Techniques,” in International Conference on Soft Computing and Signal Processing, Springer, 2023, pp. 69–82.

[18] B. Sophia, R. Lavanya, R. Kanisha, and G. Madhurusha, “Predictive Analytics of Crime Data using Supervised and Ensemble Learning Methods,” in 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), IEEE, 2022, pp. 1599–1603.

[19] V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qual. Res. Psychol., vol. 3, no. 2, pp. 77–101, 2006.

Downloads

Published

2025-04-10

How to Cite

Geospatial Mapping and Predictive Analysis for Drug Trafficking Intervention in Eastern Indonesia (I. Ismail, F. Felecia, A. K. . Azizah, & D. . Rahmawati , Trans.). (2025). West Science Interdisciplinary Studies, 3(04), 589-594. https://doi.org/10.58812/wsis.v3i04.1817