

The Potential of Forestry Sector Waste for Biochar Production: Characteristics and Production Challenges

Sumiati Simanullang¹, Riki Andika², Yunia Frida Adelka³, Saviska Luqyana Fadia⁴, Muhammad Rasyidur Ridho⁵

¹ Department of Forestry, Faculty of Agriculture, University of Jambi and sumiatisimanullang@unjia.ac.id

² Faculty of Forestry and Tropical Environment, Mulawarman University and rikiandika@fahutan.unmul.ac.id

³ Department of Forestry, Faculty of Agriculture, University of Jambi and yuniafridaadelka@unjia.ac.id

⁴ Department of Forestry, Faculty of Agriculture, University of Jambi and saviskafadia@unjia.ac.id

⁵ Department of Forestry, Faculty of Agriculture, University of Jambi and muhhammadrasyidridho@unjia.ac.id

ABSTRACT

Timber harvesting has long been the primary focus of forest utilization as a major economic resource, yet more efficient strategies are needed to reduce excessive logging by implementing measured harvesting and maximizing the use of all wood components. Branches, logging residues, sawmill by-products, and discarded wooden furniture remain underutilized and are often treated as waste. These materials have high potential to be converted into value-added products such as biochar. Forestry waste is particularly suitable as a feedstock for biochar due to its lignocellulosic richness. Biochar is a carbon-rich material produced through pyrolysis. Biochar derived from forestry waste has significant potential to improve soil structure and water-holding capacity, while also contributing to long-term carbon storage and climate change mitigation. However, challenges remain, including variability in biochar quality, absence of global standards, high production costs, contaminant risks, and limited formal guidelines.

Keywords: Biochar, Challenges, Forestry, Pyrolysis, Waste.

1. INTRODUCTION

Indonesia's forests are among the richest tropical ecosystems globally, both in biodiversity and natural resource potential. However, forest utilization has traditionally focused on timber extraction as the primary economic output. Indonesia's roundwood production has reached 64.84 million m³ [1]. Rather than relying solely on continuous logging, a more efficient strategy involves controlled harvesting combined with maximizing the use of all tree components, including materials commonly regarded as waste. Forestry waste includes all unused parts of the tree generated before or after processing. It can be classified into primary wood waste and post-consumer wood waste [2]. Primary waste includes branches, logging residues, sawdust, offcuts, and bark, as well as defects found in harvested trees [3], [4]. Post-consumer wastes consist of discarded furniture, wood-based panels, and interior components such as MDF [2]. These materials can be converted into bioenergy, composite materials, adsorbents, and compost [5]. One rapidly developing biomass conversion method is biochar production, a carbon-rich product generated by heating biomass in low-oxygen or oxygen-free conditions through pyrolysis [6]. Forestry residues are particularly suitable feedstock due to their lignocellulosic content. The lignin, cellulose, and hemicellulose components influence the stability and carbon content of the resulting biochar [7], [8], [9]. Biochar from forestry waste can improve soil structure, enhance water retention, and reduce nitrogen losses, thereby supporting increased crop productivity [10], [11]. Additionally, biochar provides long-term carbon sequestration benefits and contributes to climate change mitigation [12].

From an economic and technological perspective, utilizing forestry waste for biochar production can be financially viable particularly when applied at appropriate rates and supported

by incentives such as carbon credit markets [13], [14]. Technological advancements, including microwave-assisted pyrolysis and flash pyrolysis, increase production efficiency and biochar quality, while chemical modification improves sorption capacity [7], [15]. Nevertheless, significant challenges persist, including raw material variability, non-optimized pyrolysis efficiency, the need for quality standards, logistical constraints, high production costs, and environmental risks related to pollutant release [16], [17]. These challenges highlight the need for comprehensive studies on the characteristics and potential of forestry waste based biochar, as well as the technical and nontechnical barriers in its production, to support sustainable and industrial-scale development [18]. This review provides an integrated overview of forestry waste characteristics and the major challenges associated with biochar production.

2. METHODS

The research adopted a qualitative methodology, utilizing a systematic literature review (SLR) to identify, classify, and interpret the results of previous studies. The study utilized multiple academic databases and search platforms, such as ScienceDirect, Google Scholar, Scopus, ResearchGate, and Taylor & Francis. Relevant literature was retrieved from the selected databases by applying keywords including "biochar," "sources of forestry waste," "challenges in biochar production," "standardization challenges," "economic challenges," "environmental challenges," and "regulatory challenges." The scientific articles used were written in English or Indonesian. These studies examined various aspects of forestry waste, including physicochemical characteristics, pretreatment requirements, biochar yield and quality, and technical, economic, and environmental production challenges.

3. RESULTS AND DISCUSSION

3.1 Sources of Forestry Waste

Waste from the forestry sector arises from a range of activities within the industry and can be classified into different types according to their types and *Characteristics*.

1. Types of Waste

Forestry waste suitable for biochar production includes primary wood waste and post-consumer wood waste. Primary waste includes sawdust, wood chips, and other sawmilling residues that typically exhibit high carbon content and low contamination levels [19], [20]. Bark and branches can also be used as feedstock, producing highly porous biochar suitable for pollutant adsorption [21]. Industrial wood defects may also serve as potential feedstock, although contamination risks must be evaluated beforehand [20]. Primary waste originates from forest management and wood processing activities, including logging residues, processing waste, and urban forestry residues.

Table 1. Classification of Forestry Waste

Waste Type	Example Materials	References
Logging Residues	Stumps, branches, twigs, broken wood	[22], [23]
Processing Waste	Sawdust, chips, bark, defective wood	[24], [25]
Urban Forestry Waste	Leaves, pruned twigs	[26], [27]

Post-consumer wood waste such as discarded furniture or wood panels remains carbon-rich and can be converted into biochar. This pathway contributes to long-term carbon storage, with each kilogram of biochar able to store nearly two kilograms of CO₂ that would otherwise be released through decomposition or open burning [28]. However, post-consumer waste may contain added chemicals from manufacturing processes, raising concerns about potential contaminants such as

heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the resulting biochar [29]. Additional treatment or monitoring is therefore required to ensure environmental safety.

2. Basic Characteristics of Wood Waste

The composition and characteristics of forestry waste vary depending on species and origin. These variations include lignin content, holocellulose levels, moisture content, density, and particle size all of which influence energy potential and biodegradability [23], [24], [30]. The chemical structure of lignin, cellulose, and hemicellulose in softwood and hardwood plays a crucial role in defining biochar properties. Softwood generally contains higher lignin levels than hardwood, producing more aromatic, stable, and carbon-rich biochar due to lignin's broad decomposition temperature range and its formation of degradation-resistant aromatic residues [31]. Hardwood, in contrast, contains higher cellulose and hemicellulose, which decompose at lower temperatures, producing biochar with distinct porosity and surface area while still enabling high carbon sequestration potential [32], [33].

The greater fraction of cellulose and hemicellulose often results in hardwood-derived biochar exhibiting higher alkalinity and cation exchange capacity, supporting soil amendment applications [34]. Differences in lignocellulosic composition also influence responses to pyrolysis temperature: lignin-rich softwoods yield more stable and aromatic biochar at moderate to high temperatures (500–700°C), while the rapid decomposition of cellulose and hemicellulose in hardwood contributes to pore development and biochar yield [35], [36]. Additionally, bark-derived biochar typically offers larger surface areas and enhanced microstructure development, making it effective for water and soil remediation applications [37], [38].

3.2 Challenges in Biochar Production

Biochar production holds considerable potential for promoting environmental sustainability and improving waste management, yet it is confronted with numerous challenges that span technical, standardization, economic, environmental and regulatory.

1. Technical Challenges

Technical challenges stem primarily from the heterogeneity of feedstock, which leads to variability in biochar's physical and chemical properties such as surface area, adsorption capacity, and volatile matter content. These variations arise from differences in biomass type, moisture content, particle size, and lignocellulosic composition, complicating efforts to produce consistent-quality biochar [39], [40].

Optimizing pyrolysis conditions including temperature, heating rate, and residence time remains a key challenge, as even minor adjustments can significantly affect pore structure, surface area, and adsorption capacity [41], [42]. Although high temperatures generally enhance biochar quality, they also reduce char yield and increase energy consumption. These complexities intensify at larger production scales, which require stable equipment and the ability to handle diverse feedstock characteristics [43].

2. Standardization Challenges

The absence of globally unified standards for biochar quality, characteristics, and performance presents a significant challenge. Feedstock and pyrolysis condition variability complicate the establishment of universal parameters [40]. Laboratory inconsistencies across regions further hinder standardization efforts. Current standards remain largely regional, and universal adoption is limited. Different applications agriculture, remediation, energy, or construction require distinct quality criteria, yet comprehensive guidelines remain unavailable [44]. These issues highlight the need to integrate standardization with life cycle assessment and application-specific categorization [45].

3. Economic Challenges

Biochar production from forestry waste faces several economic challenges, particularly related to biomass collection and handling costs. Transporting and storing forest residues from remote locations to processing facilities can be expensive, affecting the overall economic feasibility [46], [47]. Minimum selling prices (MSP) vary widely based on technology and efficiency. Portable systems can generate MSPs between USD 580 and USD 5,000 per ton, though government subsidies may reduce costs by 30–387% [47].

Market demand for biochar remains emerging and highly dependent on its value in agricultural and environmental applications. Despite its soil-enhancing and carbon-sequestering benefits, market adoption remains limited, resulting in fluctuating profit margins [48], [49]. However, compared to conventional waste management methods such as open burning, biochar offers environmental benefits and creates new market opportunities for underutilized forest biomass

Production scale and policy support strongly influence economic viability. Large-scale production reduces unit costs through economies of scale, while small-scale operations often face higher costs [47], [50]. Government incentives, subsidies, and carbon market support can reduce production costs and stabilize biochar markets, though the effectiveness of such policies relies on consistency and long-term financial support [13], [51].

4. Environmental Challenges

Although forestry-waste biochar supports soil improvement and biodiversity, it can also cause environmental issues. Biochar enhances nutrient retention and reduces greenhouse gas emissions, but in certain conditions it may alter soil pH, disrupt nutrient balance, or affect soil biota communities [52], [53]. These uncertainties pose barriers to widespread adoption.

Contaminant risks represent another major environmental concern. Feedstock containing heavy metals or PAHs can transfer these contaminants to the biochar. Inadequate temperature control during pyrolysis increases the likelihood of contaminant leaching into soil and water [54], [55]. Thus, strict quality control protocols are necessary. Furthermore, life cycle assessment (LCA) is essential to ensure that biochar's environmental benefits outweigh the impacts associated with pyrolysis energy use, transportation, and distribution. Without proper management, biochar's carbon footprint may increase significantly [45].

5. Regulatory Challenges

Regulatory challenges persist due to limited policies governing biochar production, distribution, and application. In Indonesia, specific regulations related to biochar remain underdeveloped, necessitating government support to establish processing facilities and create production standards [56]. Farmer awareness, education, and financial incentives are crucial for local-level adoption [21], [57]. Collaborative platforms, such as the Indonesian International Biochar Association (ABII), have been established to advance technology and utilization.

Globally, regulations remain inconsistent. The European Union and the United States rely on voluntary standards such as the European Biochar Certificate (EBC) and the International Biochar Initiative (IBI) Standard, which emphasize feedstock quality, heavy metal limits, and environmental safety [58], [59]. As biochar is increasingly recognized as a carbon removal tool, several countries are integrating it into sustainable energy and carbon management strategies [60], [61].

CONCLUSION

The chemical structure of lignin, cellulose, and hemicellulose in softwood and hardwood strongly influences the properties of resulting biochar. Softwood's high lignin content yields more aromatic and stable biochar, while hardwood-derived biochar is shaped by the decomposition of cellulose and hemicellulose. Major production challenges include variability in biochar quality, lack

of global standards, high production costs, contaminant risks, and insufficient guidelines factors that cause market uncertainty and regulatory barriers.

REFERENCES

- [1] Badan Pusat Statistik, *Forestry Production Statistics 2024*, vol. 13. Badan Pusat Statistik, 2025.
- [2] T. Jaworski and A. Wajda, "Research on the Suitability of Selected Types of Waste for Their Thermal Treatment," in *18th International Multidisciplinary Scientific GeoConference SGEM 2018*, STEF92 Technology, 2018.
- [3] S. Soenarno, W. Edom, Z. Basari, D. Dulsalam, S. Suhartana, and Y. Yuniarwati, "Forest Exploitation Factors in Sub Region of East Kalimantan," *Jurnal Penelitian Hasil Hutan*, vol. 34, no. 4, pp. 335–348, Dec. 2016, doi: 10.20886/jphh.2016.34.4.335-348.
- [4] U. Suwarna, J. Matangaran, and Morizon, "Characteristics of Logging Waste in Tropical Peat Swamp Forest," *Jurnal Ilmu Pertanian Indonesia (JIP)*, vol. 18, no. 1, pp. 61–65, 2013.
- [5] S. Verma *et al.*, "Wood Waste Utilization in the Forest Industry: Innovations for Sustainable Management," *Archives of Current Research International*, vol. 25, no. 7, pp. 889–898, Jul. 2025, doi: 10.9734/aci/2025/v25i71388.
- [6] J. Lehmann and S. Joseph, *Biochar for Environmental Management*. London: Earthscan, 2009.
- [7] J. Huang, J. Zhao, and J. Xu, "Recent advances in valorization of lignocellulosic waste into biochar and its functionalization for the removal of chromium ions," *Int J Biol Macromol*, vol. 298, Apr. 2025, doi: 10.1016/j.ijbiomac.2025.139773.
- [8] M. Ji *et al.*, "Effects of different feedstocks-based biochar on soil remediation: A review," *Environmental Pollution*, vol. 294, p. 118655, Feb. 2022, doi: 10.1016/j.envpol.2021.118655.
- [9] I. López-Cano, M. L. Cayuela, C. Mondini, C. A. Takaya, A. B. Ross, and M. A. Sánchez-Monedero, "Suitability of different agricultural and urban organic wastes as feedstocks for the production of Biochar-Part 1: Physicochemical characterisation," *Sustainability (Switzerland)*, vol. 10, no. 7, Jul. 2018, doi: 10.3390/su10072265.
- [10] J. A. Antonangelo, X. Sun, and H. de J. Eufrade-Junior, "Biochar Impact on Soil Health and Tree-based Crops: A Review," *Biochar*, vol. 7, no. 1, Dec. 2025, doi: 10.1007/s42773-025-00450-6.
- [11] A. Kapoor, R. Sharma, A. Kumar, and S. Sepehy, "Biochar as A Means to Improve Soil Fertility and Crop Productivity: A Review," *J Plant Nutr*, vol. 45, no. 15, pp. 2380–2388, 2022, doi: 10.1080/01904167.2022.2027980.
- [12] Y. Jia *et al.*, "Mitigation of Greenhouse Gas Emissions Using Straw Biochar in Arid Regions of Northwest China: Evidence from Field Experiments," *Agronomy*, vol. 15, no. 5, May 2025, doi: 10.3390/agronomy15051007.
- [13] P. Kadam, P. Dwivedi, and T. W. Marrero, "Biochar Economics for Private Landowners With Payments From Carbon Markets and Federal Incentives," *GCB Bioenergy*, vol. 17, no. 9, Sep. 2025, doi: 10.1111/gcbb.70065.
- [14] M. R. Patel and N. L. Panwar, "Evaluating the agronomic and economic viability of biochar in sustainable crop production," *Biomass Bioenergy*, vol. 188, Sep. 2024, doi: 10.1016/j.biombioe.2024.107328.
- [15] S. Yu *et al.*, "A review on recent advances of biochar from agricultural and forestry wastes: Preparation, modification and applications in wastewater treatment," *J Environ Chem Eng*, vol. 12, no. 1, Feb. 2024, doi: 10.1016/j.jece.2023.111638.
- [16] M. Dong *et al.*, "Challenges in Safe Environmental Applications of Biochar: Identifying Risks and Unintended Consequence," Dec. 01, 2025, Springer. doi: 10.1007/s42773-024-00412-4.
- [17] D. Wang, P. Jiang, H. Zhang, and W. Yuan, "Biochar Production and Applications in Agro and Forestry Systems: A Review," *Science of the Total Environment*, vol. 723, Jun. 2020, doi: 10.1016/j.scitotenv.2020.137775.
- [18] J. Lehmann and S. Joseph, *Biochar for Environmental Management*. London: Earthscan from Routledge, 2015.
- [19] K. Jindo, H. Mizumoto, Y. Sawada, M. A. Sanchez-Monedero, and T. Sonoki, "Physical and chemical characterization of biochars derived from different agricultural residues," *Biogeosciences*, vol. 11, no. 23, pp. 6613–6621, Dec. 2014, doi: 10.5194/bg-11-6613-2014.
- [20] N. Laurila and H. Kettunen, "The Ecotoxicity of the Biochar was Investigated Using a Kinetic Bioluminescent Bacteria Test," in *Poster, European Biomass Conference & Exhibition (EUBCE) 2025*, 2025.
- [21] D. Janiszewska-Latterini *et al.*, "Social Awareness as a Catalyst for Biochar Adoption in the Agricultural and Forestry Sectors," *GCB Bioenergy*, vol. 17, no. 10, Oct. 2025, doi: 10.1111/gcbb.70077.
- [22] N. Dalya, Wahyuni, and A. V. F. Muin, "Utilization of Community Forest Wood Harvesting Waste in Bone Pute Village, Burau District, East Luwu Regency," in *IOP Conference Series: Earth and Environmental Science*, IOP Publishing Ltd, Nov. 2021. doi: 10.1088/1755-1315/886/1/012021.
- [23] A. Demirbas, "Reuse of Wood Wastes for Energy Generation," *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects*, vol. 31, no. 19, pp. 1687–1693, Oct. 2009, doi: 10.1080/15567030802094052.
- [24] R. de A. Delucis, P. S. B. dos Santos, R. Beltrame, and D. A. Gatto, "Chemical and Fuel Properties of Forestry Wastes from Pine Plantations," *Revista Árvore*, vol. 41, no. 5, May 2018, doi: 10.1590/1806-90882017000500007.
- [25] T. D. P. Protásio, L. Bufalino, G. H. D. Tonoli, M. Guimarães Junior, P. F. Trugilho, and L. M. Mendes, "Brazilian Lignocellulosic Wastes for Bioenergy Production: Characterization and Comparison with Fossil Fuels," *Bioresources*, vol. 8, no. 1, Jan. 2013, doi: 10.15376/biores.8.1.1166-1185.
- [26] C. R. Andrade *et al.*, "The Potential of Wood-Based Urban Waste to Generate Bioenergy and Increase the Energetic Sustainability," *Clean Technol Environ Policy*, vol. 26, no. 9, pp. 2885–2898, Sep. 2024, doi: 10.1007/s10098-024-02775-5.
- [27] A. Thakur, A. Kumar, and A. Somya, "Forestry and Agricultural Residues-Based Wastes," in *Biomass Wastes for Sustainable Industrial Applications*, Boca Raton: CRC Press, 2024, pp. 95–139. doi: 10.1201/9781003466833-6.

[28] N. Cerone, L. Contuzzi, G. D. Zito, C. Florio, L. Fabbiano, and F. Zimbardi, "Multiparametric Study of Water–Gas Shift and Hydrogen Separation Performance in Membrane Reactors Fed with Biomass-Derived Syngas," *Hydrogen*, vol. 6, no. 1, p. 6, Jan. 2025, doi: 10.3390/hydrogen6010006.

[29] M. Ayania, E. Terrell, A. Duns Moor, F. M. Carbajal-Gamarra, and M. Garcia-Perez, "Characterization of Solid and Vapor Products from Thermochemical Conversion of Municipal Solid Waste Woody Fractions," *Waste Management*, vol. 84, pp. 277–285, Feb. 2019, doi: 10.1016/j.wasman.2018.11.042.

[30] Z. Gao, S. Muaz-Us-salam, D. Sapsford, P. Cleall, and M. Harbottle, "Application of Natural Biodelignification Systems in Forest Soil for Enhanced Anaerobic Digestion Potential of Wood Waste," in *Proceedings of the International Congress on Environmental Geotechnics*, Argo-E Group, 2023, pp. 13–22. doi: 10.53243/ICEG2023-59.

[31] I. Naydenova, T. Radoykova, T. Petrova, O. Sandov, and I. Valchev, "Utilization Perspectives of Lignin Biochar from Industrial Biomass Residue," *Molecules*, vol. 28, no. 12, Jun. 2023, doi: 10.3390/molecules28124842.

[32] M. Grojzdek, B. Novosel, D. Klinar, J. Golob, and A. Žgajnar Gotvajn, "Pyrolysis of different wood species: influence of process conditions on biochar properties and gas-phase composition," *Biomass Convers Biorefin*, vol. 14, no. 5, pp. 6027–6037, Mar. 2024, doi: 10.1007/s13399-021-01480-3.

[33] S. Jiang *et al.*, "Characterization of Hard- and Softwood Biochars Pyrolyzed at High Temperature," *Environ Geochem Health*, vol. 39, no. 2, pp. 403–415, Apr. 2017, doi: 10.1007/s10653-016-9873-6.

[34] M. Guo, W. Song, and J. Tian, "Biochar-Facilitated Soil Remediation: Mechanisms and Efficacy Variations," *Front Environ Sci*, vol. 8, Oct. 2020, doi: 10.3389/fenvs.2020.521512.

[35] B. C. Chaves Fernandes *et al.*, "Impact of Pyrolysis Temperature on the Properties of Eucalyptus Wood-Derived Biochar," *Materials*, vol. 13, no. 24, p. 5841, Dec. 2020, doi: 10.3390/ma13245841.

[36] X. Zhang, P. Zhang, X. Yuan, Y. Li, and L. Han, "Effect of Pyrolysis Temperature and Correlation Analysis on the Yield and Physicochemical Properties of Crop Residue Biochar," *Bioresour Technol*, vol. 296, Jan. 2020, doi: 10.1016/j.biortech.2019.122318.

[37] D. Janiszewska *et al.*, "Activated Biochars Derived from Wood Biomass Liquefaction Residues for Effective Removal of Hazardous Hexavalent Chromium from Aquatic Environments," *GCB Bioenergy*, vol. 13, no. 8, pp. 1247–1259, Aug. 2021, doi: 10.1111/gcbb.12839.

[38] F. R. Stuart Majing, Y. S. Chan, I. S. Tan, Y. H. Tan, and M. D. Muhamin Samsudin, "Characterization of Valorized Pinewood Sawdust to Engineered Activated Biochar," 2023, pp. 405–413. doi: 10.1007/978-981-99-1695-5_34.

[39] M. Pan, G. Zhao, C. Ding, B. Wu, Z. Lian, and H. Lian, "Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea," *Carbohydr Polym*, vol. 176, no. August, pp. 307–314, 2017, doi: 10.1016/j.carbpol.2017.08.088.

[40] L. M. Sun *et al.*, "Biochar Production, Activation, and Applications: A Comprehensive Technical Review," *Carbon Capture Science & Technology*, vol. 16, p. 100421, Sep. 2025, doi: 10.1016/j.ccst.2025.100421.

[41] N. A. N. M. N. Azman, M. Asmadi, and M. M. Zainol, "Investigation Into Pyrolysis Impact on Biochar Traits, Soil Microbial Community Interaction, and Nutrient Dynamics: Emission and Leaching Implications," in *Biochar Ecotechnology for Sustainable Agriculture and Environment*, Elsevier, 2025, pp. 443–467. doi: 10.1016/B978-0-443-29855-4.00018-7.

[42] T. Sharma *et al.*, "Parametric Influence of Process Conditions on Thermochemical Techniques for Biochar Production: A State-of-the-Art review," *Journal of the Energy Institute*, vol. 113, Apr. 2024, doi: 10.1016/j.joei.2024.101559.

[43] S. E. Ibitoye *et al.*, "An Overview of Biochar Production Techniques and Application in Iron and Steel Industries," *Bioresour Bioprocess*, vol. 11, no. 1, p. 65, Jul. 2024, doi: 10.1186/s40643-024-00779-z.

[44] K. V. Supraja *et al.*, "Biochar Production and Its Environmental Applications: Recent Developments and Machine Learning Insights," *Bioresour Technol*, vol. 387, Nov. 2023, doi: 10.1016/j.biortech.2023.129634.

[45] A. I. Osman, M. Farghali, and A. K. Rashwan, "Life Cycle Assessment of Biochar as A Green Sorbent for Soil Remediation," *Curr Opin Green Sustain Chem*, vol. 46, Apr. 2024, doi: 10.1016/j.cogsc.2024.100882.

[46] R. Bergman, K. Sahoo, K. Englund, and S. H. Mousavi-Avval, "Lifecycle Assessment and Techno-Economic Analysis of Biochar Pellet Production from Forest Residues and Field Application," *Energies (Basel)*, vol. 15, no. 4, Feb. 2022, doi: 10.3390/en15041559.

[47] K. Sahoo, A. Upadhyay, T. Runge, R. Bergman, M. Puettmann, and E. Bilek, "Life-Cycle Assessment and Techno-Economic Analysis of Biochar Produced from Forest Residues Using Portable Systems," *Int J Life Cycle Assess*, vol. 26, no. 1, pp. 189–213, Jan. 2021, doi: 10.1007/s11367-020-01830-9.

[48] G. Di Domenico *et al.*, "New Frontiers for Raw Wooden Residues, Biochar Production as a Resource for Environmental Challenges," *C (Basel)*, vol. 10, no. 2, Jun. 2024, doi: 10.3390/c10020054.

[49] S. Koné, X. Galiegue, and W. Gwenzi, "Techno-Economic Assessment of Biochar Systems: State-of-the-Art and Future Research Directions," in *Biochar for Environmental Remediation*, Elsevier, 2025, pp. 447–459. doi: 10.1016/B978-0-323-99889-5.00022-0.

[50] A. Wrobel-Tobiszewska, M. Boersma, J. Sargison, P. Adams, and S. Jarick, "An Economic Analysis of Biochar Production Using Residues from Eucalypt Plantations," *Biomass Bioenergy*, vol. 81, pp. 177–182, Oct. 2015, doi: 10.1016/j.biombioe.2015.06.015.

[51] D. Pierson *et al.*, "Beyond the Basics: A Perspective on Barriers and Opportunities for Scaling Up Biochar Production from Forest Slash," *Biochar*, vol. 6, no. 1, Jan. 2024, doi: 10.1007/s42773-023-00290-2.

[52] M. Naseem, S. Iqbal, H. Malik, M. Awais, S. Jehan, and S. Jabeen, "Environmental Implications of Biochar," in *Biochar - Solid Carbon for Sustainable Agriculture*, BENTHAM SCIENCE PUBLISHERS, 2024, pp. 109–125. doi: 10.2174/9789815238068124010009.

[53] Md. R. Shaheb, A. Sarker, and S. Rahman, "Biochar application for sustainable soil carbon sequestration and greenhouse gas mitigation," in *Biochar Ecotechnology for Sustainable Agriculture and Environment*, Elsevier, 2025, pp. 383–409. doi: 10.1016/B978-0-443-29855-4.00035-7.

[54] R. S. Kookana, A. K. Sarmah, L. Van Zwieten, E. Krull, and B. Singh, "Biochar Application to Soil," 2011, pp. 103–143. doi: 10.1016/B978-0-12-385538-1.00003-2.

[55] A. K. Kumar and S. Sharma, "Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review," *Bioresour Bioprocess*, vol. 4, no. 1, 2017, doi: 10.1186/s40643-017-0137-9.

[56] E. Ariningsih *et al.*, "The Potential Utilisation of Rice Biomass for Biochar to Support Sustainable Rice Farming Development in Indonesia," in *BIO Web of Conferences*, A. Suryana, T. Chancellor, K. H. Ryu, M. Gemma, and S. M. Pasaribu, Eds., Jul. 2024, p. 05001. doi: 10.1051/bioconf/202411905001.

[57] T. N. Maraseni, G. Chen, and Q. Guangren, "Towards a Faster and Broader Application of Biochar: Appropriate Marketing Mechanisms," *International Journal of Environmental Studies*, vol. 67, no. 6, pp. 851–860, Dec. 2010, doi: 10.1080/00207233.2010.533892.

[58] G. Lin, Y. Wang, X. Wu, J. Meng, Y. S. Ok, and C.-H. Wang, "Enhancing Agricultural Productivity with Biochar: Evaluating Feedstock and Quality Standards," *Bioresour Technol Rep*, vol. 29, Feb. 2025, doi: 10.1016/j.biteb.2025.102059.

[59] S. Meyer *et al.*, "Biochar Standardization and Legislation Harmonization," *Journal of Environmental Engineering and Landscape Management*, vol. 25, no. 2, pp. 175–191, Jan. 2017, doi: 10.3846/16486897.2016.1254640.

[60] A. L. Cowie, A. E. Downie, B. H. George, B.-P. Singh, L. Van Zwieten, and D. O'Connell, "Is Sustainability Certification for Biochar the Answer to Environmental Risks?," *Pesqui Agropecu Bras*, vol. 47, no. 5, pp. 637–648, May 2012, doi: 10.1590/S0100-204X2012000500002.

[61] T. F. Rittl, B. Arts, and T. W. Kuyper, "Biochar: An Emerging Policy Arrangement in Brazil?," *Environ Sci Policy*, vol. 51, pp. 45–55, Aug. 2015, doi: 10.1016/j.envsci.2015.03.010.

BIOGRAPHIES OF AUTHORS

	<p>Sumiati Simanullang S.Hut., M.Si is a lecturer at the Department of Forestry, Faculty of Agriculture, Jambi University, Indonesia. She obtained her Bachelor's degree in Forestry from University of Palangka Raya (2015-2019) and her Master's degree in Forest Products Science and Technology (2021-2023), particularly in wood chemistry and biomass conversion. Sumiati's research focuses on the conversion of lignocellulosic biomass into bioenergy. Previously, Sumiati conducted a research collaboration with BRIN by utilizing oil palm empty fruit bunch biomass waste to produce reducing sugars, which are expected to be further developed into bioethanol.</p> <p>Email: sumiatisimanullang@unja.ac.id</p>
	<p>Riki Andika S.Hut., M.Si is a lecturer at the Faculty of Forestry and Tropical Environment, Mulawarman University, Samarinda, Indonesia. He earned his Bachelor's degree in Forestry from Tanjungpura University (2013–2019) and his Master's degree in Wood Science and Technology from IPB University (2020–2023). His research focuses on wood biology, natural durability, and biological deterioration, with a particular interest in developing eco-friendly wood preservatives derived from natural resources. With expertise in termite biology and wood protection, he aims to promote sustainable solutions for wood utilization while supporting biodiversity and environmental conservation, especially within tropical ecosystems.</p> <p>Email: rikiandika@fahutan.unmul.ac.id</p>

	<p>Yunia Frida Adelka, S.Hut., M.Si is a lecturer at the Faculty of Agriculture, Forestry Department, Jambi University, Jambi, Indonesia. She obtained her bachelor's degree in forestry from Jambi University (2021) and her master's degree in science from IPB University (2023). Her research focuses on forest product technology, particularly wood adhesion and biocomposites. Previously, she studied the use of wood waste as material for particle board, and collaborated with the National Research and Innovation Agency (BRIN) to develop particle board using sorghum bagasse as material and molasses, a sugar industry waste product, as a natural adhesive for particle board. She is particularly interested in developing sustainable and environmentally friendly innovations in the technology of forest products.</p> <p>Email: yuniafridaadelka@unja.ac.id</p>
	<p>Saviska Luqyana Fadia, S.Hut., M.Si is a lecturer at the Forestry Department, Faculty of Agriculture, Jambi University. She earned her Bachelor's and Master's degrees from IPB University, Indonesia. Saviska's early research has focused on the Magnetic and Physical Properties of fast-growing wood species. Actively lecturing in non-timber forest products and wood products processing fields. She is engaged in scientific publications and collaborative research, and hopes this research will make further contributions to advancing knowledge, especially in the field of Forestry.</p> <p>E-mail: saviskafadia@unja.ac.id</p>
	<p>Muhammad Rasyidur Ridho, S.Hut., M.Si is a lecturer at the Forestry Department, Faculty of Agriculture, Jambi University. He earned his Bachelor's degree in Forestry from Jambi University and his Master's degree in Wood Science and Technology from IPB University. His research focuses on wood preservatives and the synthesis of nano-lignin. Previously engaged in a research collaboration with BRIN on the production of nano-lignin as an adhesive filler.</p> <p>E-mail: muhammadrasyidurridho@unja.ac.id</p>