The Application Of Naïve Bayes Classifier In Digital Strategy For Optiminization Of Credit Guarantee Deccisions In Conditional Automatic Cover (CAC) Scheme

Authors

  • Andre Parlindungan Telkom University

DOI:

https://doi.org/10.58812/wsbm.v3i03.2059

Keywords:

Credit Guarantee, Digital Strategy, Naïve Bayes

Abstract

As a non-bank financial institution, a guarantee company provides credit guarantees to individuals, government institutions, and/or business entities that are feasible in terms of business and business but do not yet meet banking requirements and are not creditworthy (feasible but not yet bankable). This guarantee activity involves three parties, namely the Guarantee Recipient, the Guaranteed, and the Guarantor. Credit assessment in this guarantee company is important to help MSMEs in obtaining financing from banks even though they are not yet bankable. This study aims to determine, measure accuracy and determine what factors influence the application of the Naïve Bayes Classifier in a digital strategy to classify which debtor criteria are eligible and unfit for Credit Guarantee. The categorization of the guarantee data variables used are work area, business sector, credit period, credit allocation, guaranteed age, and credit ceiling value. To achieve the objectives of this study, a digital strategy system is needed that utilizes machine learning to be able to classify guarantee data to determine which debtor criteria are eligible and unfit for Credit Guarantee. The Naïve Bayes Classifier method was chosen because of its simple and fast nature in classifying data but is effective in making predictions based on probability..

References

[1] Andini, Monica., Boldrini, Michela., Ciani, Emanuele., de Blasio, Guido., D’Ignazio, Alessio., Paladini., Andrea. (2022). Machine learning in the service of policy targeting: The case of public credit guarantees. Journal of Economic Behavior and Organization 198, 434–475.

[2] Betrisandi., Sulaehani, Ruhmi., Drajana, Ivo R D. (2023) Klasifikasi Nasabah Dalam Pengelolaan Resiko Kredit Menggunakan Metode Naïve Bayes. Jurnal Nasional Komputasi dan Teknologi Informasi, 6(6), 804-806.

[3] Blessie, E Chandra., Rekha, R. (2019). Exploring the Machine Learning Algorithm for Prediction the Loan Sanctioning Process. ISSN: 2278-3075 (Online), Volume-9 Issue-1.

[4] Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0 Step-by-step data mining guide. The CRISP- DM consortium.

[5] Damanik, Joel Rayapoh., Fauzi, Rahmah., Hamami, Faqih. Implementasi Algoritma Klasifikasi Naïve Bayes Untuk Klasifikasi Credit Scoring Pada Platform Peer-To-Peer Lending. Journal of Computer System and Informatics (JoSYC), 4(4), 880-882.

[6] Dananto, Dinar Cahyo., Pasaribu, Rina Djunita. (2025). The Influence Of Digital Transformation Culture On Collection Unit Performance Through Digital Technology (Case Study : Non-Bank Financial Institutions), International Journal of Science, Technology & Management ISSN: 2722 – 4015.

[7] Dastile, Xolani., Celik, Turgay., Potsane, Moshe. (2020). Statistical and machine learning models in credit scoring: A systematic literature survey. Applied Soft Computing Journal, 91, 1-2.

[8] David, F. R. & David, F. R. (2015). Strategic Management: A Competitive Advantage Approach, Concepts and Cases (16th ed.). Pearson

[9] Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd ed.). O’Reilly Media.

[10] Gorunescu, F., 2011. Data mining: concepts and techniques.

[11] He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.

[12] Hesary, Farhad Taghizadeh., Phoumin, Han., Rasoulinezhad, Ehsan. (2022). COVID-19 and regional solutions for mitigating the risk of SME finance in selected ASEAN member states. Economic Analysis and Policy 74 (2022) 506–525.

[13] Jupama, Muhammad Hasbi., Ghina, Astri. (2023). Validation of Business Model Innovation for Digitized Product and Service Based Activities in the Core Business (A Case Study in the Microenterprise 'Buwah'). International Journal of Current Science Research and Review ISSN: 2581-8341 Volume 06.

[14] Lestari, Silvia., Dian, Mayasari. (2023). Analisa Penerapan Metode Naïve Bayes Dalam Memprediksi Kelayakan Calon Nasabah Dalam Melakukan Pinjaman. Jurnal Elektronika dan Teknik Informatika Terapan Vol. 1 No. 2.

[15] Noviaristanti, Siska., Acur, Nuran., Mendibil, Kepa. (2024). The diferent roles of innovation intermediaries to generate value. Management Review Quarterly (2024) 74:2545–2577.

[16] Nurjanah, Ika., Karaman, Jamilah., Widaningrum, Ida., Mustikasari, Dyah., Sucipto. (2023). Penggunaan Algoritma Naive Bayes Untuk Menentukan Pemberian Kredit Pada Koperasi Desa. Journal of Computer Science and Information Technology,3(2),77-79.

[17] Rasjid, Nurdina., Arifin, Nurhikmah., Cahya, Nilam. (2021). Klasifikasi Nasabah Bank Layak Kredit Menggunakan Metode Naïve Bayes. Jurnal ilmiah Sistem Informasi dan Ilmu Komputer (JUISIK), 1(1), 1-3.

[18] Sakir, Muh. (2019) . Solusi Penentuan Credit Scoring Nasabah Bank Dengan Algoritma Cart. Jurnal Sistem Informasi Dan Teknik Komputer Vol. 4, No. 1, (2019) ISSN: 2502-5899.

[19] Sun Yuan., Jian Weifeng., Fu, YuFeng., Sun, Huiping., Zhu, Yuesheng., Bai Zhiqiang. (2021). A new perspective of credit scoring for small and medium-sized enterprises based on invoice data. 2nd International Conference on Computing and Data Science (CDS)

[20] Tricahyono, D., Sudrajat, A.I. Will digital literacy moderate the relationship between digital capabilities and the business performance of MSMEs in Indonesia?. Sustainable Future: Trends, Strategies and Development – Noviaristanti & Hway Boon . ISBN 978-1-032-37201-3.

[21] Uddin, Nazim., Ahamed, Md. Khabir Uddin., Uddin, Md Ashraf., Islan, Md. Manwarul., Talukder, Md. Alamin., Aryal, Sunil. (2024). An ensemble machine learning based bank loan approval predictions system with a smart application. International Journal of Cognitive Computing in Engineering 4 (2023) 327–339.

[22] Vaska, Selma., Massaro, Maurizio, Bagarotto, Ernesto M., Mas, Francesca D. (2021). The Digital Transformation of Business Model Innovation: A Structured Literature Review. Front. Psychol, 11, 12-13.

[23] Wang, Yuelin., Zhang, Yihan., Lu, Yan., Yu, Xinran. (2020). A Comparative Assessment of Credit Risk Model Based on Machine Learning – a case study of bank loan data. Procedia Computer Science 174 (2020) 141–149.

[24] Yoshino, Naoyuki., Hesary, Farhad Taghizadeh. (2019). Optimal credit guarantee ratio for small and medium-sized enterprises’ financing: Evidence from Asia. Economic Analysis and Policy 62 (2019) 342–356.

[25] Zhang, Qiong., Zhang, Chang., Zhao, Xin. (2024). Credit Risk Assessment of Commercial Bank Customers Based on Machine Learning. DOI: 10.13140/RG.2.2.23654.43847.

Downloads

Published

2025-09-30

How to Cite

The Application Of Naïve Bayes Classifier In Digital Strategy For Optiminization Of Credit Guarantee Deccisions In Conditional Automatic Cover (CAC) Scheme (A. Parlindungan , Trans.). (2025). West Science Business and Management, 3(03), 566-573. https://doi.org/10.58812/wsbm.v3i03.2059